Oxygen Activation and Radical Transfer in Ribonucleotide Reductase from Pathogens
病原体核糖核苷酸还原酶的氧活化和自由基转移
基本信息
- 批准号:7526607
- 负责人:
- 金额:$ 46.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-01-01 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:Amino AcidsAntibioticsArchitectureAromatic Amino AcidsBindingBiologyCatalysisChemicalsChlamydiaChlamydia trachomatisChlamydophila pneumoniaeClassComplexComputing MethodologiesCrystallographyCysteineDNA biosynthesisDNA chemical synthesisDeoxyribonucleotidesDevelopmentDiseaseDrug Delivery SystemsElectron TransportElectronsEnzymesEscherichia coliEventEvolutionFree RadicalsHoloenzymesHomo sapiensHumanHydrogenHydroxylamineImmune TargetingImmune responseIronKineticsManganeseMediatingMetalsMycobacterium tuberculosisNatural regenerationNitrogenNucleotidesOrganismOxidation-ReductionOxygenPathway interactionsPharmaceutical PreparationsPhenylalaninePositioning AttributeProcessProteinsProtonsPublic HealthReactionReportingResearchResistanceRibonucleotide ReductaseRibonucleotide Reductase InhibitorRoleSimplexvirusSiteSpectrum AnalysisStandards of Weights and MeasuresStructureSystemTestingThermodynamicsTimeTyrosineVariantViral CancerVirus Diseasesabstractingcarboxylatecofactordesignhydroxyureanovelnucleoside diphosphateoxidationpathogenrepairedthree dimensional structure
项目摘要
DESCRIPTION (provided by applicant): Ribonucleotide reductases (RNRs) provide deoxyribonucleotides for DNA synthesis and repair. The enzymes employ a conserved free-radical mechanism. Class I RNRs, including the human and Herpes Simplex Virus I enzymes, use a stable tyrosyl radical to initiate this mechanism and are validated drug targets. Several of the drugs function (at least in part) by reducing the tyrosyl radical. The tyrosyl radical is introduced into the enzyme by reaction of a di-iron(II) center with O2. Class I RNRs found in important human pathogens such as Chlamydia trachomatis and Mycobacterium tuberculosis lack the tyrosyl radical. The C. trachomatis RNR is, nevertheless, active. We recently showed that the C. trachomatis RNR uses a stable Mn(IV)/Fe(III) cofactor in place of the tyrosyl radical to initiates its reaction. The cofactor undergoes reduction to the Mn(III)/Fe(III) form to generate a protein radical that abstracts a hydrogen atom from the substrate. The Ct RNR is the first example of a manganese-dependent RNR, and its cofactor is the first example of a Mn/Fe redox center in biology. The cofactor is introduced, analogously to the tyrosyl radical in the conventional class I RNRs, by reaction of the reduced [Mn(II)/Fe(II)] metal center with O2. In this reaction, a Mn(IV)/Fe(IV) accumulates to a high level. In this project, we will elucidate the mechanisms of the formation and catalytic function of this novel cofactor. We will define the structures of its Mn(II)/Fe(II), Mn(IIII)/Fe(III), Mn(IV)/Fe(III) and Mn(IV)/Fe(IV) states by spectroscopic and computational methods and x-ray crystallography. We will understand how the protein protects the oxidized cofactor from adventitious reduction but then allows it to be reduced at the appropriate time to form the hydrogen-abstracting protein radical. We will study its chemical reactivity to uncover unique vulnerabilities that might be exploited in design of new drugs against the pathogens that use this type of RNR. Finally, we will compare the structures of closely related pairs of RNRs, of which one uses the standard tyrosyl radical and the other the novel Mn(IV)/Fe(III) cofactor, for clues to the design of both systems and the evolution of one from another. We will then attempt to use these clues to rationally convert one type of RNR into the other by changing crucial amino acids. PUBLIC HEALTH RELEVANCE: The enzyme ribonucleotide reductase (RNR) catalyzes the key step in DNA biosynthesis of all organisms and is a validated target for treatment of cancer and viral diseases. We recently reported that the class Ic RNR from the human pathogen Chlamydia trachomatis uses a novel redox cofactor (a heterobinuclear Mn/Fe cluster) to initiate catalysis. The structure and mechanism of this novel RNR will be elucidated to facilitate the rational development of class Ic RNR inhibitors that could be used to treat diseases caused by C. trachomatis and several other human pathogens (e.g. Chlamydia pneumoniae and Mycobacterium tuberculosis).
描述(由申请人提供):核糖核苷酸还原酶(RNR)为DNA合成和修复提供脱氧核糖核苷酸。这些酶采用保守的自由基机制。I类RNR,包括人类和单纯疱疹病毒I酶,使用稳定的酪氨酰自由基来启动这种机制,并且是经验证的药物靶标。几种药物的功能(至少部分)是通过减少酪氨酰基自由基。酪氨酰基自由基通过二铁(II)中心与O2的反应引入酶中。在重要的人类病原体如沙眼衣原体和结核分枝杆菌中发现的I类RNR缺乏酪氨酰自由基。梭然而,沙眼RNR是活跃的。我们最近发现,C。沙眼RNR使用稳定的Mn(IV)/Fe(III)辅因子代替酪氨酰基自由基来引发其反应。辅因子经历还原成Mn(III)/Fe(III)形式以产生从底物提取氢原子的蛋白质自由基。Ct RNR是锰依赖性RNR的第一个例子,其辅因子是生物学中Mn/Fe氧化还原中心的第一个例子。类似于常规I类RNR中的酪氨酰基自由基,通过还原的[Mn(II)/Fe(II)]金属中心与O2的反应引入辅因子。在该反应中,Mn(IV)/Fe(IV)累积到高水平。在这个项目中,我们将阐明这种新的辅因子的形成和催化功能的机制。我们将通过光谱和计算方法以及X射线晶体学来定义其Mn(II)/Fe(II)、Mn(IIII)/Fe(III)、Mn(IV)/Fe(III)和Mn(IV)/Fe(IV)状态的结构。我们将了解蛋白质如何保护氧化辅因子免受偶然还原,但随后允许其在适当的时间被还原以形成夺氢蛋白质自由基。我们将研究它的化学反应性,以发现独特的漏洞,这些漏洞可能被用于设计针对使用这种RNR的病原体的新药。最后,我们将比较密切相关的RNR对的结构,其中一个使用标准酪氨酰自由基,另一个使用新型Mn(IV)/Fe(III)辅因子,以寻找这两个系统的设计和相互进化的线索。另一个。然后,我们将尝试利用这些线索,通过改变关键氨基酸,合理地将一种类型的RNR转化为另一种类型。公共卫生关系:核糖核苷酸还原酶(RNR)催化所有生物体DNA生物合成的关键步骤,是治疗癌症和病毒性疾病的有效靶点。我们最近报道,从人类病原体沙眼衣原体的Ic类RNR使用一种新的氧化还原辅因子(异双核锰/铁簇)启动催化。本文将阐明这一新的RNR的结构和作用机制,为合理开发用于治疗C.沙眼和其他几种人类病原体(如肺炎衣原体和结核分枝杆菌)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH M BOLLINGER其他文献
JOSEPH M BOLLINGER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEPH M BOLLINGER', 18)}}的其他基金
Structures and Mechanisms of “Heme-oxygenase-like” Non-heme Di-iron Enzymes that Catalyze Complex N-oxygenation and Olefin-installing C–C-Fragmentation Reactions
催化复杂 N-氧化和烯烃安装 C-C 断裂反应的“类血红素加氧酶”非血红素双铁酶的结构和机制
- 批准号:
10647843 - 财政年份:2020
- 资助金额:
$ 46.4万 - 项目类别:
Structures and Mechanisms of “Heme-oxygenase-like” Non-heme Di-iron Enzymes that Catalyze Complex N-oxygenation and Olefin-installing C–C-Fragmentation Reactions
催化复杂 N-氧化和烯烃安装 C-C 断裂反应的“类血红素加氧酶”非血红素双铁酶的结构和机制
- 批准号:
10428624 - 财政年份:2020
- 资助金额:
$ 46.4万 - 项目类别:
Structures and Mechanisms of “Heme-oxygenase-like” Non-heme Di-iron Enzymes that Catalyze Complex N-oxygenation and Olefin-installing C–C-Fragmentation Reactions
催化复杂 N-氧化和烯烃安装 C-C 断裂反应的“类血红素加氧酶”非血红素双铁酶的结构和机制
- 批准号:
10035218 - 财政年份:2020
- 资助金额:
$ 46.4万 - 项目类别:
Structures and Mechanisms of “Heme-oxygenase-like” Non-heme Di-iron Enzymes that Catalyze Complex N-oxygenation and Olefin-installing C–C-Fragmentation Reactions
催化复杂 N-氧化和烯烃安装 C-C 断裂反应的“类血红素加氧酶”非血红素双铁酶的结构和机制
- 批准号:
10208910 - 财政年份:2020
- 资助金额:
$ 46.4万 - 项目类别:
Diverse Transition-Metal and Free-Radical Chemistry Enabling 2'-Deoxyribonucleotide Production by Bacteria in Restrictive Environments
多种过渡金属和自由基化学使细菌在限制性环境中生产 2-脱氧核糖核苷酸
- 批准号:
10165753 - 财政年份:2019
- 资助金额:
$ 46.4万 - 项目类别:
Diverse Transition-Metal and Free-Radical Chemistry Enabling 2'-Deoxyribonucleotide Production by Bacteria in Restrictive Environments
多种过渡金属和自由基化学使细菌在限制性环境中生产 2-脱氧核糖核苷酸
- 批准号:
10417125 - 财政年份:2019
- 资助金额:
$ 46.4万 - 项目类别:
Mechanisms and Reprogramming of Iron/2-Oxoglutarate Desaturases and Oxacyclases
铁/2-氧戊二酸去饱和酶和氧杂环酶的机制和重编程
- 批准号:
9262989 - 财政年份:2016
- 资助金额:
$ 46.4万 - 项目类别:
Mechanisms and Reprogramming of Iron/2-Oxoglutarate Desaturases and Oxacyclases
铁/2-氧戊二酸去饱和酶和氧杂环酶的机制和重编程
- 批准号:
9084003 - 财政年份:2016
- 资助金额:
$ 46.4万 - 项目类别:
Mechanisms of oxacycle- and olefin-installing iron/2-(oxo)glutarate oxygenases
安装氧杂环和烯烃的铁/2-(氧代)戊二酸加氧酶的机制
- 批准号:
9139962 - 财政年份:2015
- 资助金额:
$ 46.4万 - 项目类别:
Mechanisms of oxacycle- and olefin-installing iron/2-(oxo)glutarate oxygenases
安装氧杂环和烯烃的铁/2-(氧代)戊二酸加氧酶的机制
- 批准号:
8965103 - 财政年份:2015
- 资助金额:
$ 46.4万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 46.4万 - 项目类别:
Studentship
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 46.4万 - 项目类别:
Research Grant
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 46.4万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 46.4万 - 项目类别:
ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 46.4万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 46.4万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 46.4万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 46.4万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 46.4万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 46.4万 - 项目类别:
Studentship














{{item.name}}会员




