Simulation of Spin Transport, Diffusion and Injection into Semiconductors
自旋输运、扩散和注入半导体的模拟
基本信息
- 批准号:EP/F016719/1
- 负责人:
- 金额:$ 49.22万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Public demand for increasingly faster and smaller electronic devices, such as computers, requires that more and even smaller transistors are packed on every chip. This has led to the birth of nanotechnology and, more recently of the nanotechnology field called 'spintronics'. Here not only the charge, but also the spin -- another fundamental property of electrons and holes -- is used to design device functionalities. Among the potential benefits of spintronics devices is the possibility of computers in which the same unit is used for computation and storage, of lower power consumption, of miniaturisation, and more generally the possibility of designing conceptually new devices which mix old functionalities with completely new ones.The first commercial application of a spintronics-related effect was the read heads for magnetic hard disk drives by IBM in the 90s, which increased the storage on a disk drive to tens of gigabytes and have since then secured a market of billions of dollars. It is clear that every development in this fascinating field is important to the specialists as well as of the general public. The basis of spintronics is understanding the spin dynamics. Unfortunately key issues such as how to inject a current of spins in a semiconductor, how to sustain it across the interfaces of the different materials forming the devices, which materials/nanostructures are best and what lengths a current of spin can travel in a specific material are still open questions. This project aims to master the principles underlying the spin dynamics, with particular attention to applications such as nanocircuits and their components. My objectives are to fully understand spin transport, diffusion and injection into semiconductors. These properties are fundamental for developing semiconductor and hybrid (metal/semiconductor) spintronics devices. The problem of electrical spin injection into semiconductors (fundamental when thinking of an electronic circuit) is still open, as well as the understanding of the role played by many-body interactions in spin transport and dynamics. In this context the ability of performing computer simulations of these phenomena is of paramount importance. Simulations can in fact be thought as ideal experiments, which allow a systematic analysis of the system response even for conditions (e.g. extreme temperatures or defect-free or exotic materials) which are too difficult or expensive to reproduce in the lab. I plan to develop computer simulation codes using two powerful techniques, non-equilibrium Monte-Carlo and spin-dependent drift-diffusion equation techniques and apply them to spin-transport in bulk and through semiconductor heterostructures, to the study of many-body interaction effects, and, ultimately, to device components.In order to do so, I will need to develop and adapt the simulation techniques themselves to the specific problems as well as to develop the underlying spin-transport theory, for example in relation to many-body effects such as the spin Coulomb drag which I predicted in 2000 and was observed experimentally in 2005.In the second part of the project, I plan to combine non-equilibrium Monte-Carlo techniques with the atomistic model: the merger of these two techniques will allow me to analyse the effects of magnetic impurities and nanostructures with an accuracy never reached so far. My aims are to improve our understanding of spin-dynamics (especially many-body interaction effects), to solve the puzzle of electrical spin-injection into semiconductors and ultimately to design basic elements for spintronics circuitry components.
公众对越来越快和越来越小的电子设备(如计算机)的需求,要求在每个芯片上封装更多甚至更小的晶体管。这导致了纳米技术的诞生,最近的纳米技术领域称为“自旋电子学”。在这里,不仅电荷,而且自旋-电子和空穴的另一个基本属性-用于设计设备功能。自旋电子学器件的潜在好处之一是计算机的可能性,其中相同的单元用于计算和存储,更低的功耗,简化,以及更普遍地设计概念上的新器件的可能性,这些器件将旧功能与全新的功能相结合。自旋电子学相关效应的第一个商业应用是IBM在90年代的磁性硬盘驱动器的读取头,它将磁盘驱动器上的存储空间增加到数十千兆字节,并从那时起获得了数十亿美元的市场。很明显,这个迷人领域的每一个发展对专家和公众都很重要。自旋电子学的基础是理解自旋动力学。不幸的是,关键问题,如如何在半导体中注入自旋电流,如何在形成器件的不同材料的界面上维持它,哪些材料/纳米结构是最好的,以及自旋电流在特定材料中可以传播的长度仍然是悬而未决的问题。该项目旨在掌握自旋动力学的基本原理,特别关注纳米电路及其组件等应用。我的目标是充分了解自旋输运,扩散和注入到半导体。这些性质是开发半导体和混合(金属/半导体)自旋电子器件的基础。电自旋注入半导体的问题(在考虑电子电路时是基本的)仍然是开放的,以及对多体相互作用在自旋输运和动力学中所起作用的理解。在这种情况下,对这些现象进行计算机模拟的能力至关重要。模拟实际上可以被认为是理想的实验,即使在实验室中重现太困难或昂贵的条件下(例如极端温度或无缺陷或奇异材料),也可以对系统响应进行系统分析。我计划使用两种强大的技术开发计算机模拟代码,非平衡蒙特-卡罗和自旋相关漂移扩散方程技术,并将其应用于体和通过半导体异质结构的自旋输运,研究多体相互作用效应,并最终应用于器件组件。我将需要发展和调整模拟技术本身的具体问题,以及发展基本的自旋输运理论,例如,关于多体效应,如我在2000年预测并在2005年实验观察到的自旋库仑阻力。在项目的第二部分,我计划将联合收割机非平衡蒙特-卡罗技术与原子模型相结合:这两种技术的结合将使我能够分析磁性杂质和纳米结构的影响,其精确度迄今为止从未达到过。我的目标是提高我们对自旋动力学(特别是多体相互作用效应)的理解,解决电子自旋注入半导体的难题,并最终设计自旋电子学电路组件的基本元件。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hubbard model as an approximation to the entanglement in nanostructures
哈伯德模型作为纳米结构中纠缠的近似
- DOI:10.1103/physreva.81.052321
- 发表时间:2010
- 期刊:
- 影响因子:2.9
- 作者:Coe J
- 通讯作者:Coe J
Effect of confinement potential geometry on entanglement in quantum dot-based nanostructures
约束势几何形状对量子点纳米结构中纠缠的影响
- DOI:10.1103/physrevb.80.235302
- 发表时间:2009
- 期刊:
- 影响因子:3.7
- 作者:Abdullah S
- 通讯作者:Abdullah S
Feasibility of approximating spatial and local entanglement in long-range interacting systems using the extended Hubbard model
使用扩展哈伯德模型近似远程相互作用系统中的空间和局部纠缠的可行性
- DOI:10.48550/arxiv.1007.5441
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Coe J
- 通讯作者:Coe J
Nonlocal formulation of spin Coulomb drag
自旋库仑阻力的非局部公式
- DOI:10.1103/physrevb.88.155324
- 发表时间:2013
- 期刊:
- 影响因子:3.7
- 作者:D'Amico I
- 通讯作者:D'Amico I
Coulomb-driven organization and enhancement of spin-orbit fields in collective spin excitations
- DOI:10.1103/physrevb.87.121303
- 发表时间:2013-03-21
- 期刊:
- 影响因子:3.7
- 作者:Baboux, F.;Perez, F.;Wojtowicz, T.
- 通讯作者:Wojtowicz, T.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irene D'Amico其他文献
An analysis of the relative effects of connectivity and coupling interactions on spin networks emulating the D-Wave 2000Q quantum annealer
模拟 D-Wave 2000Q 量子退火器,分析自旋网络连接和耦合相互作用的相对影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jessica Park;Susan Stepney;Irene D'Amico - 通讯作者:
Irene D'Amico
Irene D'Amico的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
SPIN90在幽门螺杆菌空泡毒素VacA致病中的作用及机制研究
- 批准号:82372269
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
解毒方抑制HIF-1α-Exosomal miR-130b-3p-SPIN90介导的巨噬细胞M2型极化改善肝癌免疫抑制微环境的作用机制
- 批准号:82374540
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
SPIN1激活IL-10诱导M2巨噬细胞极化促进胃癌浸润转移的机制研究
- 批准号:82103490
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SPIN1正反馈调控Hippo-YAP信号通路促胃癌侵袭转移的机制研究
- 批准号:82060566
- 批准年份:2020
- 资助金额:34 万元
- 项目类别:地区科学基金项目
自旋为1的Spin-Peierls模型的量子相变研究
- 批准号:
- 批准年份:2020
- 资助金额:18 万元
- 项目类别:专项基金项目
Spin-Peierls化合物的分子设计策略及电操控自旋态研究
- 批准号:
- 批准年份:2020
- 资助金额:64 万元
- 项目类别:面上项目
ETS1-SPIN1-PI3K/Akt网络调控乳腺癌耐药的分子机制研究
- 批准号:81902698
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
紧spin流形上Dirac方程及相关问题的研究
- 批准号:11801499
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Spin-Seebeck效应中多自由度耦合的非平衡动力学研究
- 批准号:11864001
- 批准年份:2018
- 资助金额:42.0 万元
- 项目类别:地区科学基金项目
几乎平坦流形上的Spin结构和配边问题
- 批准号:11801186
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Charge-Spin Conversions and Nonreciprocal Transport in Chiral Materials
手性材料中的电荷自旋转换和不可逆输运
- 批准号:
2325147 - 财政年份:2024
- 资助金额:
$ 49.22万 - 项目类别:
Standard Grant
Collaborative Research: Tailoring Electron and Spin Transport in Single Molecule Junctions
合作研究:定制单分子结中的电子和自旋输运
- 批准号:
2225370 - 财政年份:2023
- 资助金额:
$ 49.22万 - 项目类别:
Continuing Grant
Quantum magnetic and thermal transport by pi-electron spin
π电子自旋的量子磁和热传输
- 批准号:
23K17906 - 财政年份:2023
- 资助金额:
$ 49.22万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: Spin Transport in Nonrelatisvistically Spin-split Antiferromagnets
合作研究:非相对论自旋分裂反铁磁体中的自旋输运
- 批准号:
2316665 - 财政年份:2023
- 资助金额:
$ 49.22万 - 项目类别:
Continuing Grant
Chirality-Induced Spin Selectivity in Biology:The Role of Spin-Polarized Electron Current in Biological Electron Transport & Redox Enzymatic Activity
生物学中手性诱导的自旋选择性:自旋极化电子流在生物电子传输中的作用
- 批准号:
BB/X002810/1 - 财政年份:2023
- 资助金额:
$ 49.22万 - 项目类别:
Research Grant
Collaborative Research: Tailoring Electron and Spin Transport in Single Molecule Junctions
合作研究:定制单分子结中的电子和自旋输运
- 批准号:
2225369 - 财政年份:2023
- 资助金额:
$ 49.22万 - 项目类别:
Continuing Grant
Chirality-Induced Spin Selectivity in Biology:The Role of Spin-Polarized Electron Current in Biological Electron Transport & Redox Enzymatic Activity
生物学中手性诱导的自旋选择性:自旋极化电子流在生物电子传输中的作用
- 批准号:
2314465 - 财政年份:2023
- 资助金额:
$ 49.22万 - 项目类别:
Standard Grant
Collaborative Research: Spin Transport in Nonrelatisvistically Spin-split Antiferromagnets
合作研究:非相对论自旋分裂反铁磁体中的自旋输运
- 批准号:
2316664 - 财政年份:2023
- 资助金额:
$ 49.22万 - 项目类别:
Continuing Grant
Impact of Radical Polymer Architecture on Spin Transport
自由基聚合物结构对自旋输运的影响
- 批准号:
2321618 - 财政年份:2023
- 资助金额:
$ 49.22万 - 项目类别:
Standard Grant
Magnon-phonon transport in spin insulatronics devices
自旋绝缘电子器件中的磁振子-声子输运
- 批准号:
2885352 - 财政年份:2023
- 资助金额:
$ 49.22万 - 项目类别:
Studentship














{{item.name}}会员




