Mobile atom traps based on domain walls in magnetic nanowires
基于磁性纳米线畴壁的移动原子陷阱
基本信息
- 批准号:EP/F024886/1
- 负责人:
- 金额:$ 90.01万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the most dramatic recent advances in physics has been the experimental realization of new states of matter as a consequence of using lasers to cool atoms to within a millionth of a degree of absolute zero. The development of laser-cooling techniques was the subject of the 1997 Nobel Prize in Physics, and the realization of a new state of matter, a Bose-Einstein Condensate, resulted in the 2001 Nobel Prize. The atoms to be cooled in this research project can be though of as tiny bar magnets (they are paramagnetic atoms), and at very low temperatures it is possible to trap them using relatively small magnetic fields.A quite separate recent development has been the advance of planar magnetic nanowire technologies. The extended geometry of these wires constrains magnetisation to lie along the wire length. When opposite magnetisation directions meet in a nanowire, they are separated by a transition region termed a 'domain wall'. These domain walls can be moved through nanowire circuits using externally applied magnetic fields but they are also themselves a source of magnetic field. We have recently shown how the magnetic field from a domain wall in a nanowire can be used to trap laser-cooled atoms.In this proposal, we aim to demonstrate experimentally and investigate atom trapping using domain walls in nanowires. The cold atoms trapped above a nanowire will be robustly confined and, crucially, mobile due to the precision with which the position of domain walls can be controlled. This is an excellent platform for further research in controlling interactions between neighbouring trapped atoms. In the burgeoning field of Quantum Information Processing (QIP) two atoms can be entangled by bringing them close and subsequently separating them. Furthermore, many identical copies of a fundamental nanowire circuit unit can be tessellated to create quantum-computing networks.This proposal also offers applications in other important research areas. The nanometre scale of the magnetic domain wall results in the trapped atoms being closer than a micrometre to the substrate. Varying the magnitude of external magnetic fields allows control of the exact atom-surface height, hence it is envisaged that domain-wall atom traps will be used to study atom-surface interactions. Developing a mobile nanomagnetic atom traps provides a precursor technology to more complicated quantum objects, and their application to new science, such as quantum collisions on surfaces, or new technologies, such as quantum information processing.
物理学最近最戏剧性的进展之一是通过实验实现了物质的新状态,这是使用激光将原子冷却到绝对零度的百万分之一以内的结果。激光冷却技术的发展是1997年诺贝尔物理学奖的主题,而一种新的物质状态--玻色-爱因斯坦凝聚体的实现,导致了2001年的诺贝尔奖。在这个研究项目中要冷却的原子可以被认为是微小的条形磁铁(它们是顺磁原子),在非常低的温度下,可以使用相对较小的磁场来捕获它们。另一个完全不同的最近的发展是平面磁性纳米线技术的进步。这些导线的延伸几何形状限制了磁化作用沿导线的长度。当相反的磁化方向在纳米线中相遇时,它们被一个称为“磁区壁”的过渡区隔开。这些域壁可以利用外部施加的磁场通过纳米线电路移动,但它们本身也是磁场的来源。我们最近展示了如何利用纳米线中的域壁的磁场来捕获激光冷却的原子。在这个提议中,我们的目标是通过实验演示和研究利用纳米线中的域壁来捕获原子。捕获在纳米线上方的冷原子将被牢牢地限制,更关键的是,由于可以精确地控制域壁的位置,这些原子可以移动。这是进一步研究控制相邻俘获原子之间相互作用的极好平台。在新兴的量子信息处理(QIP)领域中,两个原子可以通过拉近和分离来实现纠缠。此外,一个基本纳米线电路单元的许多相同副本可以被镶嵌以创建量子计算网络。这一提议还提供了在其他重要研究领域的应用。磁畴壁的纳米级导致被捕获的原子距离衬底不到一微米。改变外加磁场的大小可以控制原子-表面的精确高度,因此可以设想使用磁化-壁原子陷阱来研究原子-表面的相互作用。开发可移动的纳米磁原子陷阱为更复杂的量子物体提供了一种先驱技术,并将其应用于新的科学,如表面的量子碰撞,或新的技术,如量子信息处理。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design and Characterization of a Field-Switchable Nanomagnetic Atom Mirror
场可切换纳米磁性原子镜的设计和表征
- DOI:10.48550/arxiv.1008.1769
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Hayward T
- 通讯作者:Hayward T
Linear transport of domain walls confined to propagating 1-D potential wells
域壁的线性输运仅限于传播一维势阱
- DOI:10.1063/1.4825044
- 发表时间:2013
- 期刊:
- 影响因子:3.2
- 作者:Negotia M
- 通讯作者:Negotia M
Nanomagnetic engineering of the properties of domain wall atom traps
畴壁原子陷阱特性的纳米磁工程
- DOI:10.48550/arxiv.1109.3666
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Hayward T
- 通讯作者:Hayward T
Domain walls in ring-shaped nanowires under rotating applied fields
旋转施加场下环形纳米线的畴壁
- DOI:10.1063/1.4812388
- 发表时间:2013
- 期刊:
- 影响因子:3.2
- 作者:Negoita M
- 通讯作者:Negoita M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Allwood其他文献
Daniel Allwood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Allwood', 18)}}的其他基金
Magnetic Architectures for Reservoir Computing Hardware (MARCH)
油藏计算硬件的磁架构 (MARCH)
- 批准号:
EP/V006339/1 - 财政年份:2021
- 资助金额:
$ 90.01万 - 项目类别:
Research Grant
Coherent spin waves for emerging nanoscale magnonic logic architectures
用于新兴纳米级磁波逻辑架构的相干自旋波
- 批准号:
EP/L020696/1 - 财政年份:2014
- 资助金额:
$ 90.01万 - 项目类别:
Research Grant
Magneto-optical Kerr effect with non-uniform optical polarisation
具有非均匀光学偏振的磁光克尔效应
- 批准号:
EP/H044922/1 - 财政年份:2010
- 资助金额:
$ 90.01万 - 项目类别:
Research Grant
Magnetoresistive sensors for magnetic domain wall technologies
用于磁畴壁技术的磁阻传感器
- 批准号:
EP/F069359/1 - 财政年份:2008
- 资助金额:
$ 90.01万 - 项目类别:
Research Grant
Magnetic X-ray Transmission Microscopy of Domain Walls in Magnetic Nanowires
磁性纳米线中畴壁的磁 X 射线透射显微镜
- 批准号:
EP/D056683/1 - 财政年份:2006
- 资助金额:
$ 90.01万 - 项目类别:
Research Grant
相似国自然基金
1keV/atom以下的团簇离子注入固体极浅表面的过程研究
- 批准号:11075076
- 批准年份:2010
- 资助金额:42.0 万元
- 项目类别:面上项目
双星中性原子探测图像在地磁暴期间的时序演化过程反演分析
- 批准号:40974100
- 批准年份:2009
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Microwave Atom Chip Traps for Atom Interferometry
用于原子干涉测量的微波原子芯片陷阱
- 批准号:
2308767 - 财政年份:2023
- 资助金额:
$ 90.01万 - 项目类别:
Standard Grant
Fabrication of integrated optics for miniature ion and atom traps
用于微型离子和原子陷阱的集成光学器件的制造
- 批准号:
2448125 - 财政年份:2020
- 资助金额:
$ 90.01万 - 项目类别:
Studentship
Microwave Traps and Atom Interferometry with AC Zeeman Potentials
微波陷阱和原子干涉测量与交流塞曼势
- 批准号:
1806558 - 财政年份:2018
- 资助金额:
$ 90.01万 - 项目类别:
Continuing Grant
Integrated optical elements for miniaturised atom traps
用于小型化原子陷阱的集成光学元件
- 批准号:
2116050 - 财政年份:2018
- 资助金额:
$ 90.01万 - 项目类别:
Studentship
gMOT: Scaleable manufacture and evaluation of miniature cold atom traps
gMOT:微型冷原子陷阱的可扩展制造和评估
- 批准号:
EP/R021325/1 - 财政年份:2017
- 资助金额:
$ 90.01万 - 项目类别:
Research Grant
gMOT: Scalable manufacture and evaluation of miniature cold atom traps
gMOT:微型冷原子陷阱的可扩展制造和评估
- 批准号:
EP/R020086/1 - 财政年份:2017
- 资助金额:
$ 90.01万 - 项目类别:
Research Grant
Rydberg-Atom Physics in Ponderomotive Traps and Atomic Imaging Devices
有质动力陷阱和原子成像装置中的里德伯原子物理学
- 批准号:
1205559 - 财政年份:2012
- 资助金额:
$ 90.01万 - 项目类别:
Continuing Grant
RUI: Photoassociation Studies in Rare-Gas Atom Traps
RUI:稀有气体原子陷阱中的光缔合研究
- 批准号:
1068078 - 财政年份:2011
- 资助金额:
$ 90.01万 - 项目类别:
Standard Grant
Small-Scale Ring Traps for Atom Interferometry and Quantum Fluid Investigations
用于原子干涉测量和量子流体研究的小型环形陷阱
- 批准号:
EP/G026068/1 - 财政年份:2009
- 资助金额:
$ 90.01万 - 项目类别:
Research Grant
Mobile atom traps based on domain walls in magnetic nanowires
基于磁性纳米线畴壁的移动原子陷阱
- 批准号:
EP/F025459/1 - 财政年份:2008
- 资助金额:
$ 90.01万 - 项目类别:
Research Grant