Magnetic X-ray Transmission Microscopy of Domain Walls in Magnetic Nanowires

磁性纳米线中畴壁的磁 X 射线透射显微镜

基本信息

  • 批准号:
    EP/D056683/1
  • 负责人:
  • 金额:
    $ 1.19万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

Networks of magnetic 'nanowires' fabricated on a flat silicon chip have recently emerged as a system in which the magnetisation behaviour can be controlled with a great deal of precision. Possible technological applications of these nanowires include sensors, memory elements and information processing. The wires are typically made of commonly occurring ferromagnetic materials, such as nickel and iron, and are typically 5 / 20 nanometres thick, 100 / 500 nanometres wide and several micrometres long. Wire geometry is of vital importance since this controls the magnetisation to lie along the wire length. This may be visualised as magnetic north and south poles at opposite ends of a wire or, more usefully, as an arrow with the arrow head representing magnetic north. However, opposite regions of magnetisation can meet inside these wires, which can be visualised by two arrows pointing towards each other. Here, a small transition region approximately 100 nanometres in length occurs in which the magnetisation rotates by 180 degrees. Scientists call this a 'domain wall'.Magnetic fields can be applied to magnetic wires using an electromagnet and can result in domain walls moving along the wires. Understanding this motion is crucial to the future development of domain wall technologies as it is likely to provide new insight on how domain walls can be controlled as well as setting some limits to the possibilities. Furthermore, there is a fundamental scientific interest in how domain walls respond to applied magnetic fields and several theoretical predictions of how domain walls move have yet to be tested experimentally. However, domain walls are not identical but have a magnetic structure that will depend on its environment, e.g. wire dimensions or applied magnetic field. The nature of domain wall motion will depend on the magnetic structure of the domain wall.A key issue is how to measure the domain wall motion and image the domain wall structure. We already know that domain walls can travel at velocities over 1000 metres per second, so the measurement must be relatively fast and must be coupled with a capability to image the magnetic structure of a domain wall. Most measurement techniques used today fail to meet one or both of these criteria but X-ray imaging could provide a solution. X-ray circular dichroism uses circularly polarised X-rays incident on a sample. In a magnetic material, with the correct choice of X-rays, regions with magnetisation in one direction will absorb a greater proportion of X-rays than regions with magnetisation in the opposite direction. Hence, image contrast is generated with magnetic features as small as 15 nanometres, which is ideal for studying domain walls in magnetic nanowires. Unfortunately, the low intensity of standard laboratory X-ray sources requires long exposure times to obtain an image and is not suited for observing domain wall motion. However, 'synchrotron' sources use highly accelerated electrons to produce an extremely intense X-ray source that allows magnetisation images in a fraction of a second. Furthermore, the Advanced Light Source synchrotron facility at Lawrence Berkeley National Laboratories in California, USA can be operated to provide X-ray bursts that last for just eighty picoseconds. This has been used to study magnetisation changes in microscopic square-shaped magnetic elements and has the potential to be turned towards domain wall motion in nanowires.The overall aim of this research proposal is to test the feasibility of using synchrotron X-rays to image domain walls in magnetic nanowires. There are several issues to address, such as fabricating nanowires on top of an X-ray transparent material, how sensitive the measurement technique is, and how repeatable domain wall motion is. Resolving these issues will result in a new and powerful way of imaging domain wall motion that will allow important scientific and technological questions to be answered.
磁性“纳米线”网络在平板硅芯片上制造,最近出现了一种系统,在这种系统中,磁化行为可以被非常精确地控制。这些纳米线可能的技术应用包括传感器、存储元件和信息处理。电线通常由常见的铁磁性材料制成,如镍和铁,通常为5 / 20纳米厚,100 / 500纳米宽,几微米长。导线的几何形状是至关重要的,因为这控制了沿导线长度的磁化。这可以可视化为磁北极和磁南极在导线的两端,或者更有用的是,作为一个箭头,箭头的头部代表磁北极。然而,相反的磁化区域可以在这些导线内部相遇,这可以通过两个相互指向的箭头来可视化。在这里,一个大约100纳米长的小过渡区出现,磁化旋转180度。科学家称其为“区域墙”。磁场可以用电磁铁施加到磁性导线上,并且可以导致畴壁沿着导线移动。理解这一运动对未来领域墙技术的发展至关重要,因为它可能为如何控制领域墙以及为可能性设置一些限制提供新的见解。此外,对于畴壁如何响应外加磁场以及畴壁如何移动的几个理论预测还有待实验测试,这是一个基本的科学兴趣。然而,畴壁不是相同的,而是具有磁性结构,这将取决于其环境,例如电线尺寸或施加的磁场。畴壁运动的性质取决于畴壁的磁性结构。一个关键问题是如何测量畴壁运动和成像畴壁结构。我们已经知道,畴壁可以以超过每秒1000米的速度移动,因此测量必须相对较快,并且必须具有成像畴壁磁性结构的能力。目前使用的大多数测量技术都不能满足这些标准中的一个或两个,但x射线成像可以提供一个解决方案。x射线圆二色性使用入射到样品上的圆偏振x射线。在磁性材料中,通过正确选择x射线,一个方向磁化的区域将比相反方向磁化的区域吸收更大比例的x射线。因此,图像对比度是由小至15纳米的磁性特征产生的,这对于研究磁性纳米线中的畴壁是理想的。不幸的是,低强度的标准实验室x射线源需要较长的曝光时间才能获得图像,并且不适合观察畴壁运动。然而,“同步加速器”源使用高度加速的电子产生极其强烈的x射线源,可以在几分之一秒内产生磁化图像。此外,美国加州劳伦斯伯克利国家实验室的先进光源同步加速器设备可以提供持续80皮秒的x射线爆发。这已被用于研究微观方形磁性元件的磁化变化,并有可能转向纳米线的畴壁运动。这项研究计划的总体目标是测试使用同步加速器x射线对磁性纳米线中的畴壁成像的可行性。有几个问题需要解决,比如在x射线透明材料上制造纳米线,测量技术的灵敏度,以及畴壁运动的可重复性。解决这些问题将产生一种新的、强大的成像畴壁运动的方法,这将使重要的科学和技术问题得到回答。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transverse Field-Induced Nucleation Pad Switching Modes During Domain Wall Injection
畴壁注入期间横向场诱导成核垫切换模式
Switchable Cell Trapping Using Superparamagnetic Beads
  • DOI:
    10.1109/lmag.2010.2046143
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Bryan, Matthew T.;Smith, Katherine H.;Haycock, John W.
  • 通讯作者:
    Haycock, John W.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Allwood其他文献

Daniel Allwood的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Allwood', 18)}}的其他基金

Magnetic Architectures for Reservoir Computing Hardware (MARCH)
油藏计算硬件的磁架构 (MARCH)
  • 批准号:
    EP/V006339/1
  • 财政年份:
    2021
  • 资助金额:
    $ 1.19万
  • 项目类别:
    Research Grant
Coherent spin waves for emerging nanoscale magnonic logic architectures
用于新兴纳米级磁波逻辑架构的相干自旋波
  • 批准号:
    EP/L020696/1
  • 财政年份:
    2014
  • 资助金额:
    $ 1.19万
  • 项目类别:
    Research Grant
Magneto-optical Kerr effect with non-uniform optical polarisation
具有非均匀光学偏振的磁光克尔效应
  • 批准号:
    EP/H044922/1
  • 财政年份:
    2010
  • 资助金额:
    $ 1.19万
  • 项目类别:
    Research Grant
Mobile atom traps based on domain walls in magnetic nanowires
基于磁性纳米线畴壁的移动原子陷阱
  • 批准号:
    EP/F024886/1
  • 财政年份:
    2008
  • 资助金额:
    $ 1.19万
  • 项目类别:
    Research Grant
Magnetoresistive sensors for magnetic domain wall technologies
用于磁畴壁技术的磁阻传感器
  • 批准号:
    EP/F069359/1
  • 财政年份:
    2008
  • 资助金额:
    $ 1.19万
  • 项目类别:
    Research Grant

相似国自然基金

基于慧眼-HXMT宽能段观测的X射线吸积脉冲星磁场研究
  • 批准号:
    12373051
  • 批准年份:
    2023
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
同步X-ray成像对调控自噬的联合疗法抗三阴性乳腺癌机制研究
  • 批准号:
    22ZR1470600
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于时空信息融合的2D X-ray到3D CT图像配准实时引导肺癌放疗研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
不同基因型大豆根系生长改善压实土壤结构的机制研究
  • 批准号:
    42007010
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
荷载、浸水条件下花岗岩残积土微细观结构演化及损伤本构关系
  • 批准号:
    51978413
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于X射线线形分析技术的钒高温高压强度特性研究
  • 批准号:
    11872056
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
基于原位局域表面等离子体共振技术的CeO2/Ag催化剂表界面效应探索及在催化氧化甲醛中应用
  • 批准号:
    21802066
  • 批准年份:
    2018
  • 资助金额:
    26.6 万元
  • 项目类别:
    青年科学基金项目
CAT、DSA、x-ray与解剖技术相结合确立小腿后外侧皮支链皮瓣血管构筑
  • 批准号:
    31860294
  • 批准年份:
    2018
  • 资助金额:
    42.0 万元
  • 项目类别:
    地区科学基金项目
分子体系激光冷却的机理和方法的高精度理论研究
  • 批准号:
    21773251
  • 批准年份:
    2017
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
若干蛋白质分子的取向测量的二维光谱理论研究
  • 批准号:
    21703221
  • 批准年份:
    2017
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Three dimensional material flow visualization in dissimilar friction stir welding by X-ray transmission imaging
通过 X 射线透射成像实现异种材料搅拌摩擦焊中的三维材料流动可视化
  • 批准号:
    24K17532
  • 财政年份:
    2024
  • 资助金额:
    $ 1.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development and evaluation of a combined X-ray transmission and diffraction imaging system for pathology
用于病理学的组合 X 射线透射和衍射成像系统的开发和评估
  • 批准号:
    10699271
  • 财政年份:
    2023
  • 资助金额:
    $ 1.19万
  • 项目类别:
Multiparametric Tissue Characterization for Breast Cancer Screening Using Transmission and Reflection Ultrasound Tomography
使用透射和反射超声断层扫描进行乳腺癌筛查的多参数组织表征
  • 批准号:
    10675896
  • 财政年份:
    2023
  • 资助金额:
    $ 1.19万
  • 项目类别:
Scanning transmission x-ray microscopy study on the element-separation mechanism of lanthanide and actinide extractants
扫描透射X射线显微镜研究镧系和锕系萃取剂的元素分离机理
  • 批准号:
    23K11709
  • 财政年份:
    2023
  • 资助金额:
    $ 1.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Tuberculosis in households with infectious cases in Kampala city: Harnessing health data science for new insights on TB transmission and treatment response (DS-IAFRICA-TB)
坎帕拉市感染病例家庭中的结核病:利用健康数据科学获得有关结核病传播和治疗反应的新见解 (DS-IAFRICA-TB)
  • 批准号:
    10713181
  • 财政年份:
    2023
  • 资助金额:
    $ 1.19万
  • 项目类别:
Structural and functional principles underlying germline genome transmission
种系基因组传播的结构和功能原理
  • 批准号:
    10676300
  • 财政年份:
    2022
  • 资助金额:
    $ 1.19万
  • 项目类别:
Structural and functional principles underlying germline genome transmission
种系基因组传播的结构和功能原理
  • 批准号:
    10535616
  • 财政年份:
    2022
  • 资助金额:
    $ 1.19万
  • 项目类别:
Molecular studies of human antibody responses to Plasmodium falciparum transmission-blocking antigens
人类抗体对恶性疟原虫传播阻断抗原反应的分子研究
  • 批准号:
    475520
  • 财政年份:
    2022
  • 资助金额:
    $ 1.19万
  • 项目类别:
    Studentship Programs
MRI: Acquisition of a Dual Transmission X-ray Diffractometer (DTXRD) for Studying the Local and Bulk Structure of Soft and Hard Materials under In situ and Operando Conditions
MRI:购买双透射 X 射线衍射仪 (DTXRD),用于研究原位和操作条件下软质和硬质材料的局部和整体结构
  • 批准号:
    2216231
  • 财政年份:
    2022
  • 资助金额:
    $ 1.19万
  • 项目类别:
    Standard Grant
Multimodality X-ray transmission and diffraction scanner for molecular analysis of cancer specimens
用于癌症样本分子分析的多模态 X 射线透射和衍射扫描仪
  • 批准号:
    10656798
  • 财政年份:
    2021
  • 资助金额:
    $ 1.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了