System-wide Study of Transcriptional Control of Metabolism

代谢转录控制的全系统研究

基本信息

项目摘要

DESCRIPTION (provided by applicant): This proposal is in response to the NIH call for Exploratory Collaborations with National Centers for Biomedical Computing, PAR-06-223, and it will involve a collaboration between Columbia University's MAGNet NCBC and a team at Los Alamos National Laboratory. The aim of the proposal is a system-wide tudy of integrated transcriptional and metabolic networks in Eschericia coli K-12 strain, aiming at a similar analysis of a pathogen, Bacillus anthracis, at a later date. LANL hosts an experimental research program on bacterial metabolomics. Metabolites serve several functions. The most common one is being the precursors to various cellular components. They are also regulators of cellular functions by means of modulating metabolic reactions or binding to transcription factors and subsequently regulating gene expression. Conversely, the genes regulated by a transcription factor often encode enzymes, modulating the speed of metabolic reactions. Thus, to understand and ultimately predict the cellular response to an environmental change of interest (e.g., pathogen entry into its host environment), we must integrate the analysis of the transcriptome and metabolome. To address this need, we will work with the laboratories of Pat Unkefer and John Dunbar, which will produce data sets of about 300 joint metabolic/transcriptional profiles of E.coli under different steady-state growth conditions. The resources of MAGnet NCBC, specifically the algorithms within the geWorkbench bioinformatics platform produced by the center, will be leveraged to reconstruct cellular networks. Specifically, we expect that ARACNE, an algorithm originally developed by MAGNet for high-fidelity analysis of transcriptional networks in mammalian cells, is well positioned for reconstruction of metabolic networks from high throughput system-wide metabolic activity data, provide that appropriate modifications to deal with the specifics of the metabolic data are made. We will also adapt the algorithm to discover modulated interactions, that is, metabolic interactions that are conditional on the activity of a modulator gene (enzyme), or transcriptional interactions that require the presence of a metabolite to proceed. Such integrated genome/metabolome analysis has not been attempted yet. It will be a giant leap towards a complete understanding of cellular processes in an important organism. Because of the comparatively small size of bacterial genomes and metabolomes, it will be possible to perform system-wide analyses of interactions for the entire integrated genome and metabolome. While important in its own right, especially in view of the pathogenic nature of B. anthracis, this research would also represent an important test bed for a subsequent study of metabolic diseases in higher animals, including humans.
描述(由申请人提供):该提案是对NIH呼吁与国家生物医学计算中心进行探索性合作的回应,PAR-06-223,它将涉及哥伦比亚大学磁铁NCBC与洛斯阿拉莫斯国家实验室的团队之间的合作。该提案的目的是在大肠杆菌K-12菌株中的整体转录和代谢网络的系统范围的延期,旨在在以后对病原体(病原体)的类似分析。 LANL举办了一项有关细菌代谢组学的实验研究计划。代谢物具有多种功能。最常见的是各种细胞成分的前体。它们还通过调节代谢反应或与转录因子的结合并随后调节基因表达来调节细胞功能。相反,受转录因子调节的基因通常编码酶,从而调节代谢反应的速度。因此,为了理解并最终预测对环境变化的细胞反应(例如,病原体进入其宿主环境),我们必须整合转录组和代谢组的分析。为了满足这一需求,我们将与Pat Unkefer和John Dunbar的实验室合作,该实验室将在不同的稳态生长条件下生成大约300个E.Coli的300个联合代谢/转录概况的数据集。磁铁NCBC的资源,特别是该中心生产的Geworkbench生物信息学平台中的算法,将利用用于重建蜂窝网络。具体而言,我们预计,Aracne是一种最初是由磁铁开发的算法,用于对哺乳动物细胞中转录网络进行高保真分析,对从高吞吐量系统范围内代谢性数据进行重建的重建良好,提供了适当的修改以处理代谢数据的具体内容。我们还将调整算法以发现调制相互作用,即以调节剂基因(酶)的活性为条件的代谢相互作用或需要代谢物进行进行进行的转录相互作用。这种综合基因组/代谢组分析尚未尝试。这将是对重要生物体中细胞过程的完全理解的巨大飞跃。由于细菌基因组和代谢组的大小相对较小,因此可以对整个综合基因组和代谢组进行全系统范围的相互作用分析。虽然本身很重要,尤其是鉴于炭疽芽孢杆菌的致病性质,但这项研究也将代表一个重要的测试床,用于随后研究包括人类在内的高等动物的代谢疾病。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mass conservation and inference of metabolic networks from high-throughput mass spectrometry data.
从高通量质谱数据中进行质量守恒和代谢网络的推断。
Using sequence-specific chemical and structural properties of DNA to predict transcription factor binding sites.
  • DOI:
    10.1371/journal.pcbi.1001007
  • 发表时间:
    2010-11-18
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Bauer AL;Hlavacek WS;Unkefer PJ;Mu F
  • 通讯作者:
    Mu F
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William S Hlavacek其他文献

William S Hlavacek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William S Hlavacek', 18)}}的其他基金

System Dynamics of PD-1 Signaling in T Cells
T 细胞中 PD-1 信号传导的系统动力学
  • 批准号:
    10399590
  • 财政年份:
    2021
  • 资助金额:
    $ 22.02万
  • 项目类别:
System Dynamics of PD-1 Signaling in T Cells
T 细胞中 PD-1 信号传导的系统动力学
  • 批准号:
    10211871
  • 财政年份:
    2021
  • 资助金额:
    $ 22.02万
  • 项目类别:
Multiscale Modeling to Optimize Inhibition of Oncogenic ERK Pathway Signaling
多尺度建模优化致癌 ERK 通路信号传导的抑制
  • 批准号:
    10558581
  • 财政年份:
    2020
  • 资助金额:
    $ 22.02万
  • 项目类别:
Multiscale Modeling to Optimize Inhibition of Oncogenic ERK Pathway Signaling
多尺度建模优化致癌 ERK 通路信号传导的抑制
  • 批准号:
    10337242
  • 财政年份:
    2020
  • 资助金额:
    $ 22.02万
  • 项目类别:
Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer
自噬介导的化疗耐药肺癌生存的计算模型
  • 批准号:
    9547104
  • 财政年份:
    2017
  • 资助金额:
    $ 22.02万
  • 项目类别:
Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer
自噬介导的化疗耐药肺癌生存的计算模型
  • 批准号:
    9769647
  • 财政年份:
    2017
  • 资助金额:
    $ 22.02万
  • 项目类别:
Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer
自噬介导的化疗耐药肺癌生存的计算模型
  • 批准号:
    9139424
  • 财政年份:
    2015
  • 资助金额:
    $ 22.02万
  • 项目类别:
Hardening Software for Rule-based models-Competitive Revision
基于规则的模型的强化软件 - 竞争性修订
  • 批准号:
    10382135
  • 财政年份:
    2014
  • 资助金额:
    $ 22.02万
  • 项目类别:
Hardening Software for Rule-based Modeling
用于基于规则的建模的强化软件
  • 批准号:
    10615068
  • 财政年份:
    2014
  • 资助金额:
    $ 22.02万
  • 项目类别:
Hardening Software for Rule-based Modeling.
用于基于规则的建模的强化软件。
  • 批准号:
    8898854
  • 财政年份:
    2014
  • 资助金额:
    $ 22.02万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
  • 批准号:
    10822202
  • 财政年份:
    2024
  • 资助金额:
    $ 22.02万
  • 项目类别:
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
  • 批准号:
    10711136
  • 财政年份:
    2023
  • 资助金额:
    $ 22.02万
  • 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
  • 批准号:
    10709381
  • 财政年份:
    2023
  • 资助金额:
    $ 22.02万
  • 项目类别:
A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
  • 批准号:
    10588092
  • 财政年份:
    2023
  • 资助金额:
    $ 22.02万
  • 项目类别:
Substance use treatment and county incarceration: Reducing inequities in substance use treatment need, availability, use, and outcomes
药物滥用治疗和县监禁:减少药物滥用治疗需求、可用性、使用和结果方面的不平等
  • 批准号:
    10585508
  • 财政年份:
    2023
  • 资助金额:
    $ 22.02万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了