Ultra-flexible Carbon Nanotube Yarn Electrodes that Integrate with Brain
与大脑集成的超柔性碳纳米管纱线电极
基本信息
- 批准号:7391363
- 负责人:
- 金额:$ 19.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-10 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsActive SitesAnimalsAreaAthleticBiocompatibleBlindnessBlood flowBrainBrain PartCarbonCephalicChargeChemicalsChronicClassificationCommunicationComputer softwareContractsContralateralDepthElectrodesElectrolytesFailureFosteringFoundationsHeadHistologyHuntington DiseaseHydration statusImplantIridiumKnowledgeLaboratoriesLengthLinkMechanicsMedicalMicroelectrodesMovementNeuraxisNeuronsPhasePhysiologic pulsePhysiologicalPhysiologyPlant RootsPolymersProsthesisPulse takingPurposeRelative (related person)ResearchResearch InstituteResearch PersonnelResidual stateResistanceRunningSignal TransductionSiteSneezingSourceSpinal cord injuryStructureSurfaceSystemTechniquesTechnologyTestingTissuesTraumaUnited States National Institutes of HealthVibrissaeWorkbasebiomaterial compatibilitybrain tissueclinical applicationcommercializationcomparativecraniumdesignelectric impedanceexperienceimplantationinterestinterfacialliquid crystal polymerpressureprogramsprototypereceptorrelating to nervous systemsize
项目摘要
DESCRIPTION (provided by applicant): For the past 30 years, there has been extensive interest in developing a communication link between electronically controlled machines and the central nervous system for neuroprosthetics for spinal cord injury, blindness, prosthetic control and many other applications. However, all current applications of chronic neural interface technology are substantially hampered by lack of functional stability in the neural interface, possibly due to the mechanics of the stiff and tethered implants relative to the soft and dynamic brain. There are three dominant sources of mechanical mismatch the interconnects, the interconnect-electrode superstructure, and the electrodes themselves. Mechanical mismatch is a widely recognized shortcoming of the existing technology that this proposed program will largely overcome by creating a chronically implantable, thin, polymer based elastic thread-like interconnect technology that will integrate with the brain surface, and will access neurons of interest through flexible, threadlike electrodes with small but low impedance active sites. The objective of the proposed work is to develop a new cortical neural interface technology that physically and permanently integrates with the pia and cortex and that: 1) maintains long term physiological stability with specific target neurons; 2) are rugged and reliable for many decades; 3) can be readily atraumatically implanted; 3) utilizes advanced, non-fouling, low impedance/high charge capacity capacitive electrode material; and 4) could support economical rapid turn-around prototype runs of investigator generated designs. The feasibility of achieving this objective will be quantitatively assessed over the course of one year by an intense collaborative effort with Foster-Miller, Inc and InnerSea Technology, Inc. Physiological stability will be directly tested using a cortical barrel receptor (whisker) paradigm and automated action potential classification software. In addition, one of the most experienced quantitative histology laboratories in the world, Huntington Medical Research Institute, will provide independent, objective comparative histological analysis of the implanted tissues vs the extensively studied Iridium shaft electrode arrays that they have developed. Following the completion of this proposed Phase I work, the following will have been accomplished: 1) candidate tissue integrative electrode designs will have been identified and verified with mechanical testing (bench); 2) insertion techniques for these will have been developed and evaluated (bench and animals); 3) electrochemical and electrical parameters of the final electrode contacts will have been thoroughly documented (bench and animals); 4) preliminary testing of the physiological stability of the implant system relative to target neurons will have been completed and compared to similar testing in the contralateral cortex using Iridium arrays; and 5) initial objective quantitative assessment of the biocompatibility of the system will be complete. Phase II will begin limited commercialization for neuroprosthetics and other research, confirmation of biocompatibility and bioresistance, and testing of clinical applications in spinal cord injury.
描述(由申请人提供):在过去的30年里,人们对开发电子控制机器和中枢神经系统之间的通信链路产生了广泛的兴趣,用于脊髓损伤、失明、假肢控制和许多其他应用的神经假肢。然而,慢性神经界面技术的所有当前应用基本上受到神经界面中缺乏功能稳定性的阻碍,这可能是由于刚性和栓系植入物相对于柔软和动态大脑的力学。机械失配有三个主要来源 互连、互连电极超结构和电极本身。机械失配是现有技术的一个被广泛认识到的缺点,该提出的程序将通过创建长期可植入的、薄的、基于聚合物的弹性线状互连技术来在很大程度上克服该缺点,该弹性线状互连技术将与脑表面整合,并且将通过具有小但低阻抗活性位点的柔性线状电极来访问感兴趣的神经元。提出的工作的目标是开发一种新的皮质神经接口技术,该技术在物理上永久地与软脑膜和皮质整合,并且:1)与特定的靶神经元保持长期的生理稳定性; 2)几十年来坚固可靠; 3)可以容易地无损伤植入; 3)利用先进的、无污染的、低阻抗/高电荷容量的电容电极材料;以及4)可以支持研究者生成的设计的经济的快速周转原型运行。实现这一目标的可行性将在一年内通过与Foster-Miller公司和InnerSea技术公司的密切合作进行定量评估。将使用皮质桶受体(须)范例和自动动作电位分类软件直接测试生理稳定性。此外,世界上最有经验的定量组织学实验室之一,亨廷顿医学研究所,将提供植入组织与他们开发的广泛研究的铱轴电极阵列的独立、客观的比较组织学分析。在完成该拟议的第一阶段工作后,将完成以下工作:1)将通过机械测试(台架)识别并验证候选组织集成电极设计; 2)将开发并评价这些电极的插入技术(动物和动物); 3)最终电极接触的电化学和电气参数将被彻底记录(台架和动物); 4)将完成植入物系统相对于靶神经元的生理稳定性的初步测试,并与使用铱阵列的对侧皮质中的类似测试进行比较;和5)完成系统生物相容性的初步客观定量评估。第二阶段将开始有限的商业化,用于神经修复和其他研究,确认生物相容性和生物抗性,并测试脊髓损伤的临床应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID J EDELL其他文献
DAVID J EDELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID J EDELL', 18)}}的其他基金
Ultra-flexible Carbon Nanotube Yarn Electrodes that Integrate with Brain
与大脑集成的超柔性碳纳米管纱线电极
- 批准号:
7651155 - 财政年份:2008
- 资助金额:
$ 19.43万 - 项目类别:
Ultra-low-power wireless implant stimulator for prosthesis sensory feedback
用于假体感觉反馈的超低功耗无线植入刺激器
- 批准号:
7167163 - 财政年份:2006
- 资助金额:
$ 19.43万 - 项目类别:
PhysioTelemeter for Autonomic Monitoring
用于自主监测的 PhysioTelemeter
- 批准号:
6963693 - 财政年份:2005
- 资助金额:
$ 19.43万 - 项目类别:
Liquid Crystal Polymer Substrate IntraCochlear Electrode
液晶聚合物基底耳蜗内电极
- 批准号:
6585330 - 财政年份:2003
- 资助金额:
$ 19.43万 - 项目类别:
Development of an Implantable EMG Micro-Telemeter
植入式肌电图微型遥测仪的开发
- 批准号:
7127716 - 财政年份:1999
- 资助金额:
$ 19.43万 - 项目类别:
DEVELOPMENT OF AN IMPLANTABLE EMG MICRO-TELEMETER
植入式肌电微遥测仪的开发
- 批准号:
6015742 - 财政年份:1999
- 资助金额:
$ 19.43万 - 项目类别:
Development of an Implantable EMG Micro-Telemeter
植入式肌电图微型遥测仪的开发
- 批准号:
6994036 - 财政年份:1999
- 资助金额:
$ 19.43万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 19.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 19.43万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 19.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 19.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 19.43万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 19.43万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




