Ultra-flexible Carbon Nanotube Yarn Electrodes that Integrate with Brain
与大脑集成的超柔性碳纳米管纱线电极
基本信息
- 批准号:7651155
- 负责人:
- 金额:$ 17.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-10 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsActive SitesAnimalsAreaAthleticBiocompatibleBlindnessBlood flowBrainBrain PartCarbonCephalicChargeChemicalsChronicClassificationCommunicationComputer softwareContractsContralateralElectrodesElectrolytesFailureFosteringFoundationsHeadHistologyHuntington DiseaseHydration statusImplantIridiumKnowledgeLaboratoriesLengthLinkMechanicsMedical ResearchMicroelectrodesMovementNeuraxisNeuronsPhasePhysiologic pulsePhysiologicalPhysiologyPlant RootsPolymersProsthesisRelative (related person)ResearchResearch InstituteResearch PersonnelResidual stateResistanceRunningSignal TransductionSiteSneezingSourceSpinal cord injuryStructureSurfaceSystemTechniquesTechnologyTestingTissuesTraumaUnited States National Institutes of HealthVibrissaeWorkbasebiomaterial compatibilitybrain tissueclinical applicationcommercializationcomparativecraniumdesignelectric impedanceexperienceflexibilityimplantationinterestinterfacialliquid crystal polymerpressureprogramsprototypereceptorrelating to nervous system
项目摘要
DESCRIPTION (provided by applicant): For the past 30 years, there has been extensive interest in developing a communication link between electronically controlled machines and the central nervous system for neuroprosthetics for spinal cord injury, blindness, prosthetic control and many other applications. However, all current applications of chronic neural interface technology are substantially hampered by lack of functional stability in the neural interface, possibly due to the mechanics of the stiff and tethered implants relative to the soft and dynamic brain. There are three dominant sources of mechanical mismatch the interconnects, the interconnect-electrode superstructure, and the electrodes themselves. Mechanical mismatch is a widely recognized shortcoming of the existing technology that this proposed program will largely overcome by creating a chronically implantable, thin, polymer based elastic thread-like interconnect technology that will integrate with the brain surface, and will access neurons of interest through flexible, threadlike electrodes with small but low impedance active sites. The objective of the proposed work is to develop a new cortical neural interface technology that physically and permanently integrates with the pia and cortex and that: 1) maintains long term physiological stability with specific target neurons; 2) are rugged and reliable for many decades; 3) can be readily atraumatically implanted; 3) utilizes advanced, non-fouling, low impedance/high charge capacity capacitive electrode material; and 4) could support economical rapid turn-around prototype runs of investigator generated designs. The feasibility of achieving this objective will be quantitatively assessed over the course of one year by an intense collaborative effort with Foster-Miller, Inc and InnerSea Technology, Inc. Physiological stability will be directly tested using a cortical barrel receptor (whisker) paradigm and automated action potential classification software. In addition, one of the most experienced quantitative histology laboratories in the world, Huntington Medical Research Institute, will provide independent, objective comparative histological analysis of the implanted tissues vs the extensively studied Iridium shaft electrode arrays that they have developed. Following the completion of this proposed Phase I work, the following will have been accomplished: 1) candidate tissue integrative electrode designs will have been identified and verified with mechanical testing (bench); 2) insertion techniques for these will have been developed and evaluated (bench and animals); 3) electrochemical and electrical parameters of the final electrode contacts will have been thoroughly documented (bench and animals); 4) preliminary testing of the physiological stability of the implant system relative to target neurons will have been completed and compared to similar testing in the contralateral cortex using Iridium arrays; and 5) initial objective quantitative assessment of the biocompatibility of the system will be complete. Phase II will begin limited commercialization for neuroprosthetics and other research, confirmation of biocompatibility and bioresistance, and testing of clinical applications in spinal cord injury.
描述(由申请人提供):在过去的30年中,人们对电子控制的机器与中枢神经系统之间的通信联系一直引起人们的兴趣,用于用于脊髓损伤,失明,假体控制和许多其他应用。但是,由于神经界面缺乏功能稳定性,慢性神经界面技术的所有当前应用都受到了极大的阻碍,这可能是由于刚性和束缚植入物相对于软和动态大脑的机制。机械不匹配的互连,互连 - 电极上层建筑和电极本身的三个主要来源。机械不匹配是该现有技术的广泛认识的缺点,该提议的程序将在很大程度上可以通过创建长期植入,基于聚合物的弹性线的弹性互连技术来克服,该技术将与大脑表面集成,并通过具有柔性的螺纹式电极具有柔性的,但较小的电极且势头较低的活性站点来访问感兴趣的神经元。拟议工作的目的是开发一种新的皮质神经界面技术,该技术在物理和永久性地与PIA和皮层融合在一起,并且:1)保持长期生理稳定性,并具有特定的靶神经元; 2)数十年来坚固且可靠; 3)可以轻易地植入; 3)利用高级,非污染,低阻抗/高电荷容量电容电极材料; 4)可以支持经济快速的转向原型运行,该原型生成的设计。通过与Foster-Miller,Inc和Innersea Technology,Inc。的激烈合作努力,将在一年的时间内定量评估实现这一目标的可行性。生理稳定性将使用皮质桶受体(Whisker)范式(Whisker)范式直接测试,并自动化动作动作潜在的分类软件。此外,亨廷顿医学研究所是世界上经验最丰富的定量组织学实验室之一,将对植入组织的独立,客观的比较组织学分析与他们开发的广泛研究的虹膜轴电极阵列。该提出的I期工作完成后,将完成以下内容:1)候选组织整合电极设计将通过机械测试(台式)进行鉴定和验证; 2)将开发和评估这些技术的插入技术(长凳和动物); 3)最终电极触点的电化学和电参数将被彻底证明(板凳和动物); 4)对植入物系统相对于靶神经元的生理稳定性的初步测试将已经完成,并与使用Iridium阵列的对侧皮层中的类似测试进行了比较; 5)将完成对系统生物相容性的初始客观定量评估。第二阶段将开始有限的神经植物和其他研究,确认生物相容性和生物存在以及对脊髓损伤中临床应用的测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID J EDELL其他文献
DAVID J EDELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID J EDELL', 18)}}的其他基金
Ultra-flexible Carbon Nanotube Yarn Electrodes that Integrate with Brain
与大脑集成的超柔性碳纳米管纱线电极
- 批准号:
7391363 - 财政年份:2008
- 资助金额:
$ 17.93万 - 项目类别:
Ultra-low-power wireless implant stimulator for prosthesis sensory feedback
用于假体感觉反馈的超低功耗无线植入刺激器
- 批准号:
7167163 - 财政年份:2006
- 资助金额:
$ 17.93万 - 项目类别:
PhysioTelemeter for Autonomic Monitoring
用于自主监测的 PhysioTelemeter
- 批准号:
6963693 - 财政年份:2005
- 资助金额:
$ 17.93万 - 项目类别:
Liquid Crystal Polymer Substrate IntraCochlear Electrode
液晶聚合物基底耳蜗内电极
- 批准号:
6585330 - 财政年份:2003
- 资助金额:
$ 17.93万 - 项目类别:
Development of an Implantable EMG Micro-Telemeter
植入式肌电图微型遥测仪的开发
- 批准号:
7127716 - 财政年份:1999
- 资助金额:
$ 17.93万 - 项目类别:
DEVELOPMENT OF AN IMPLANTABLE EMG MICRO-TELEMETER
植入式肌电微遥测仪的开发
- 批准号:
6015742 - 财政年份:1999
- 资助金额:
$ 17.93万 - 项目类别:
Development of an Implantable EMG Micro-Telemeter
植入式肌电图微型遥测仪的开发
- 批准号:
6994036 - 财政年份:1999
- 资助金额:
$ 17.93万 - 项目类别:
相似海外基金
Optimization of Flexible Neural Probe Arrays for Multi-Region Recordings in Rodents and Nonhuman Primates
用于啮齿动物和非人类灵长类动物多区域记录的柔性神经探针阵列的优化
- 批准号:
10401221 - 财政年份:2022
- 资助金额:
$ 17.93万 - 项目类别:
Design and Validation of the Utah Multisite Electrode Array (UMEA)
犹他多点电极阵列 (UMEA) 的设计和验证
- 批准号:
8997542 - 财政年份:2014
- 资助金额:
$ 17.93万 - 项目类别:
Design and Validation of the Utah Multisite Electrode Array (UMEA)
犹他多点电极阵列 (UMEA) 的设计和验证
- 批准号:
8720477 - 财政年份:2014
- 资助金额:
$ 17.93万 - 项目类别:
Target Mycobacterium Protein Tyrosine Phosphatase B for Anti-Tuberculosis Agents
用于抗结核药物的靶分枝杆菌蛋白酪氨酸磷酸酶 B
- 批准号:
8089759 - 财政年份:2010
- 资助金额:
$ 17.93万 - 项目类别:
Cortical mechanisms and functional role of slow sleep oscillations
慢睡眠振荡的皮质机制和功能作用
- 批准号:
8119074 - 财政年份:2008
- 资助金额:
$ 17.93万 - 项目类别: