Dynamic ICG and FA Software

动态 ICG 和 FA 软件

基本信息

  • 批准号:
    7481652
  • 负责人:
  • 金额:
    $ 15.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-05-01 至 2010-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Indocyanine Green (ICG) and Sodium Fluorescein (SF) are fluorescent dyes used clinically in eye fundus imaging, primarily for detecting vascular abnormalities in the retina and choroid, which is the layer behind the retina. It is used with the Heidelberg Retinal Tomograph (HRT) by visualizing movies that show the dynamics of the dye filling and draining through the vessels, modalities called dynamic ICG (d-ICG) or dynamic Fluorescein Angiography (d-FA). It is proposed to develop a new software technology, leading to a software product, that will facilitate straightforward interpretation of d-ICG and d-FA movies. This Phase I proposal focuses, first, on an important clinical application - that of measuring the response of neovascular lesions to drug treatment, such as Avastin. An algorithm that provides a basic measurement of the filling time of blood vessels, maps that filling time over the area of the fundus, and highlights changes in the filling time following treatment, will be developed and tested for its ability to show changes after treatment. A second application is that of identifying feeder vessels, for the laser treatment of neovascular diseases. Several additional applications and algorithms are proposed and are identified as the subject of focus for later research, including the Phase II research. PUBLIC HEALTH SIGNIFICANCE: The end objective of this project is to produce technology that results in a software product for automatically analyzing dynamic Indocyanine Green (d-ICG) and Fluorescein (d-FA) angiographs. The Phase I project is aimed at showing feasibility of doing so, while the later Phase II project will be focused on building and testing the software to make it ready for integration into a product. There are many clinical and medical research applications for the software, including the measurement of response to drug treatments for neovascular conditions, the detection of feeder vessels for laser treatment of neovascular conditions, and the early detection of vascular changes that occur in diabetic retinopathy. Because of these many applications, there is a good potential market to make the end-product profitable. However, the Phase I and Phase II projects will be focused upon the application that is both (a), needed in the clinic and (b), possible to produce as a sellable product in a relatively short amount of time. The second requirement, (b), is critical because the time it takes to develop and sell a product must be short in order to produce cash flow necessary to deliver the product. To meet these 2 requirements, the first application of focus, and the most straightforward one to develop into a sellable product in a short time, will be in measuring the response to drug therapies. This product meets these two requirements partly because there is an immediate worldwide clinical and medical-research need for an objective measure of response to neovascular-disease drug therapies, data sets are readily available for testing the prototype software and our expertise equips us to assess, right away, the images output by the prototype product. The Phase I objective is to show that it is feasible to detect a response to drug therapy. If time permits, other applications will be shown to be feasible during Phase I as well. The specific aims are: (1) Design and implement algorithms for compensating the image sequences for motion and for measuring fill time. Fill time is the time that occurs between a reference instant (theoretically the instant of tracer injection, but this is difficult to determine so other reference points will be used) and the point where the pixel reaches 90% of its peak value. (2) Prototype a software algorithm that measures and displays changes in the fill time of blood vessels. (3) Prototype a graphical user interface (GUI) for executing the algorithm and interpreting the resulting measurements. (4) Test the algorithm for detecting response to treatment by processing image sets from a subject before and after treatment with Avastin/anti-VEGF, an anti-angiogenic drug. (5) Only if time permits, a related method for identifying feeder vessels in neovascular lesions will be prototyped.
描述(申请人提供):吲哚菁绿(ICG)和荧光素钠(SF)是临床上用于眼底成像的荧光染料,主要用于检测视网膜和脉络膜(视网膜后面的一层)的血管异常。它与海德堡视网膜断层摄影(HRT)一起使用,通过可视化电影显示染料在血管中填充和排出的动态,模式称为动态ICG (d-ICG)或动态荧光素血管造影(d-FA)。建议开发一种新的软件技术,导致软件产品,将有助于直接解释d-ICG和d-FA电影。这个I期项目首先侧重于一个重要的临床应用——测量新血管病变对药物治疗的反应,如阿瓦斯汀。将开发并测试一种算法,该算法提供血管填充时间的基本测量,将填充时间映射到眼底区域,并突出显示治疗后填充时间的变化,以显示治疗后的变化。第二个应用是识别供血血管,用于新血管疾病的激光治疗。提出了几个额外的应用和算法,并确定为后续研究的重点主题,包括第二阶段的研究。公共卫生意义:该项目的最终目标是开发一种软件产品,用于自动分析动态吲哚菁绿(d-ICG)和荧光素(d-FA)血管造影。第一阶段的项目旨在展示这样做的可行性,而后来的第二阶段项目将侧重于构建和测试软件,使其准备好集成到产品中。该软件有许多临床和医学研究应用,包括测量对新血管疾病药物治疗的反应,检测激光治疗新血管疾病的馈线血管,以及早期检测糖尿病视网膜病变中发生的血管变化。由于有这么多的应用,有一个很好的潜在市场,使最终产品有利可图。然而,第一阶段和第二阶段的项目将集中在(a)临床需要和(b)可能在相对较短的时间内作为可销售产品生产的应用上。第二个要求(b)至关重要,因为开发和销售产品所需的时间必须短,以便产生交付产品所需的现金流。为了满足这两个要求,焦点的第一个应用,也是在短时间内发展成为可销售产品的最直接的方法,将是测量对药物治疗的反应。该产品满足了这两个要求,部分原因是全球临床和医学研究迫切需要对新血管疾病药物治疗的反应进行客观测量,用于测试原型软件的数据集随时可用,我们的专业知识使我们能够立即评估原型产品输出的图像。第一阶段的目标是证明检测药物治疗反应是可行的。如果时间允许,其他应用也将在第一阶段被证明是可行的。具体目标是:(1)设计和实现用于补偿运动图像序列和测量填充时间的算法。填充时间是指在参考时刻(理论上是示踪剂注入的时刻,但这很难确定,因此将使用其他参考点)和像素达到其峰值90%的点之间发生的时间。(2)对测量和显示血管填充时间变化的软件算法进行原型化。(3)原型化图形用户界面(GUI),用于执行算法和解释结果测量。(4)通过处理受试者使用抗血管生成药物阿瓦斯汀/抗vegf治疗前后的图像集,测试检测治疗反应的算法。(5)只有在时间允许的情况下,一种识别新血管病变中供血血管的相关方法才会原型化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TIMOTHY J HOLMES其他文献

TIMOTHY J HOLMES的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TIMOTHY J HOLMES', 18)}}的其他基金

Photoreceptor Integrity Software
感光器完整性软件
  • 批准号:
    8311455
  • 财政年份:
    2012
  • 资助金额:
    $ 15.91万
  • 项目类别:
Software for Early Detection of Diabetic Neuropathy
早期检测糖尿病神经病变的软件
  • 批准号:
    7537009
  • 财政年份:
    2008
  • 资助金额:
    $ 15.91万
  • 项目类别:
Dynamic ICG and FA Software
动态 ICG 和 FA 软件
  • 批准号:
    7933496
  • 财政年份:
    2008
  • 资助金额:
    $ 15.91万
  • 项目类别:
Deconvolution of Spherical Aberration in Confocal Microscopy of Thick Tissues
厚组织共焦显微镜中球面像差的反卷积
  • 批准号:
    7106694
  • 财政年份:
    2006
  • 资助金额:
    $ 15.91万
  • 项目类别:
Maximum Likelihood FRET Imaging
最大似然FRET成像
  • 批准号:
    6833238
  • 财政年份:
    2004
  • 资助金额:
    $ 15.91万
  • 项目类别:
Software to Aid Assessment of Macular Edema
辅助评估黄斑水肿的软件
  • 批准号:
    6485068
  • 财政年份:
    2002
  • 资助金额:
    $ 15.91万
  • 项目类别:
Sub-Diffraction and Sub-Pixel Microscopic Deconvolution
亚衍射和亚像素显微反卷积
  • 批准号:
    6401366
  • 财政年份:
    2001
  • 资助金额:
    $ 15.91万
  • 项目类别:
Sub-Diffraction and Sub-Pixel Microscopic Deconvolution
亚衍射和亚像素显微反卷积
  • 批准号:
    7285666
  • 财政年份:
    2001
  • 资助金额:
    $ 15.91万
  • 项目类别:
Sub-Diffraction and Sub-Pixel Microscopic Deconvolution
亚衍射和亚像素显微反卷积
  • 批准号:
    7051337
  • 财政年份:
    2001
  • 资助金额:
    $ 15.91万
  • 项目类别:
AUTOMATED 3D TISSUE CHANGE DETECTION/QUANTIFICATION
自动 3D 组织变化检测/量化
  • 批准号:
    6656984
  • 财政年份:
    1998
  • 资助金额:
    $ 15.91万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 15.91万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 15.91万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 15.91万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 15.91万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 15.91万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 15.91万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 15.91万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 15.91万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 15.91万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.91万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了