Dynamic ICG and FA Software
动态 ICG 和 FA 软件
基本信息
- 批准号:7933496
- 负责人:
- 金额:$ 27.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-05-01 至 2010-04-30
- 项目状态:已结题
- 来源:
- 关键词:AftercareAlgorithmsAngiogenesis InhibitorsAreaAvastinBlood VesselsChoroidClinicClinicalComputer softwareData SetDetectionDiabetic RetinopathyDiseaseDyesEarly DiagnosisEyeFluoresceinFluorescein AngiographyFluoresceinsFluorescent DyesFundusImageIndocyanine GreenInjection of therapeutic agentLasersLesionMapsMarketingMeasurementMeasuresMedical ResearchMethodsModalityMotionOutputPharmaceutical PreparationsPharmacotherapyPhaseProcessPublic HealthResearchRetinaRetinalSodium FluoresceinTechnologyTestingTimeTracerbevacizumabclinical applicationdesigngraphical user interfaceimage processingmeetingsmovieneovascularprototyperesponse
项目摘要
DESCRIPTION (provided by applicant): Indocyanine Green (ICG) and Sodium Fluorescein (SF) are fluorescent dyes used clinically in eye fundus imaging, primarily for detecting vascular abnormalities in the retina and choroid, which is the layer behind the retina. It is used with the Heidelberg Retinal Tomograph (HRT) by visualizing movies that show the dynamics of the dye filling and draining through the vessels, modalities called dynamic ICG (d-ICG) or dynamic Fluorescein Angiography (d-FA). It is proposed to develop a new software technology, leading to a software product, that will facilitate straightforward interpretation of d-ICG and d-FA movies. This Phase I proposal focuses, first, on an important clinical application - that of measuring the response of neovascular lesions to drug treatment, such as Avastin. An algorithm that provides a basic measurement of the filling time of blood vessels, maps that filling time over the area of the fundus, and highlights changes in the filling time following treatment, will be developed and tested for its ability to show changes after treatment. A second application is that of identifying feeder vessels, for the laser treatment of neovascular diseases. Several additional applications and algorithms are proposed and are identified as the subject of focus for later research, including the Phase II research. PUBLIC HEALTH SIGNIFICANCE: The end objective of this project is to produce technology that results in a software product for automatically analyzing dynamic Indocyanine Green (d-ICG) and Fluorescein (d-FA) angiographs. The Phase I project is aimed at showing feasibility of doing so, while the later Phase II project will be focused on building and testing the software to make it ready for integration into a product. There are many clinical and medical research applications for the software, including the measurement of response to drug treatments for neovascular conditions, the detection of feeder vessels for laser treatment of neovascular conditions, and the early detection of vascular changes that occur in diabetic retinopathy. Because of these many applications, there is a good potential market to make the end-product profitable. However, the Phase I and Phase II projects will be focused upon the application that is both (a), needed in the clinic and (b), possible to produce as a sellable product in a relatively short amount of time. The second requirement, (b), is critical because the time it takes to develop and sell a product must be short in order to produce cash flow necessary to deliver the product. To meet these 2 requirements, the first application of focus, and the most straightforward one to develop into a sellable product in a short time, will be in measuring the response to drug therapies. This product meets these two requirements partly because there is an immediate worldwide clinical and medical-research need for an objective measure of response to neovascular-disease drug therapies, data sets are readily available for testing the prototype software and our expertise equips us to assess, right away, the images output by the prototype product. The Phase I objective is to show that it is feasible to detect a response to drug therapy. If time permits, other applications will be shown to be feasible during Phase I as well. The specific aims are: (1) Design and implement algorithms for compensating the image sequences for motion and for measuring fill time. Fill time is the time that occurs between a reference instant (theoretically the instant of tracer injection, but this is difficult to determine so other reference points will be used) and the point where the pixel reaches 90% of its peak value. (2) Prototype a software algorithm that measures and displays changes in the fill time of blood vessels. (3) Prototype a graphical user interface (GUI) for executing the algorithm and interpreting the resulting measurements. (4) Test the algorithm for detecting response to treatment by processing image sets from a subject before and after treatment with Avastin/anti-VEGF, an anti-angiogenic drug. (5) Only if time permits, a related method for identifying feeder vessels in neovascular lesions will be prototyped.
描述(申请人提供):吲哚青绿(ICG)和荧光素钠(SF)是临床上用于眼底成像的荧光染料,主要用于检测视网膜和脉络膜中的血管异常,脉络膜是视网膜后面的一层。它与海德堡视网膜断层扫描仪(HRT)一起使用,通过可视化电影显示通过血管的染料填充和排出的动态,称为动态ICG(d-ICG)或动态荧光素血管造影(d-FA)。建议开发一种新的软件技术,从而产生一种软件产品,该软件产品将促进对d-ICG和d-FA电影的直接解释。这项第一阶段的提案首先集中在一个重要的临床应用上--测量新生血管病变对药物治疗的反应,如阿瓦斯丁。将开发一种算法,提供血管充盈时间的基本测量,绘制眼底区域的充盈时间图,并突出治疗后充盈时间的变化,并测试其显示治疗后变化的能力。第二个应用是识别供血血管,用于激光治疗新生血管疾病。提出了其他几个应用和算法,并将其确定为以后研究的重点,包括第二阶段的研究。公共卫生意义:该项目的最终目标是生产一种软件产品,用于自动分析动态吲哚青绿(d-ICG)和荧光素(d-FA)血管造影术。第一阶段项目旨在显示这样做的可行性,而第二阶段后期项目将专注于构建和测试软件,使其准备好集成到产品中。该软件有许多临床和医学研究应用,包括测量对新血管疾病药物治疗的反应,检测激光治疗新血管疾病的供血血管,以及早期检测糖尿病视网膜病变中发生的血管变化。由于有这么多的应用,最终产品有一个很好的潜在市场来盈利。然而,第一阶段和第二阶段项目将侧重于既有(A)临床所需的应用,又有可能在相对较短的时间内作为可销售产品生产的应用。第二项要求(B)至关重要,因为开发和销售产品所需的时间必须很短,才能产生交付产品所需的现金流。为了满足这两个要求,Focus的第一个应用,也是在短时间内开发成可销售产品的最直接的应用,将是测量对药物治疗的反应。该产品满足这两个要求的部分原因是,全球临床和医学研究迫切需要客观衡量对新血管疾病药物疗法的反应,数据集随时可用于测试原型软件,我们的专业知识使我们能够立即评估原型产品输出的图像。第一阶段的目标是证明检测药物治疗的反应是可行的。如果时间允许,在第一阶段也将证明其他应用是可行的。具体目标是:(1)设计和实现运动补偿算法和填充时间测量算法。填充时间是在参考时刻(理论上是示踪剂注入的时刻,但这很难确定,因此将使用其他参考点)和像素达到其峰值的90%的点之间发生的时间。(2)开发了一种测量和显示血管充盈时间变化的软件算法。(3)建立图形用户界面原型,用于执行算法和解释测量结果。(4)通过处理受试者在接受抗血管生成药物阿瓦斯丁/抗血管内皮生长因子治疗前后的图像集来测试检测治疗反应的算法。(5)只有在时间允许的情况下,才能建立识别新生血管病变中供血血管的相关方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TIMOTHY J HOLMES其他文献
TIMOTHY J HOLMES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TIMOTHY J HOLMES', 18)}}的其他基金
Software for Early Detection of Diabetic Neuropathy
早期检测糖尿病神经病变的软件
- 批准号:
7537009 - 财政年份:2008
- 资助金额:
$ 27.7万 - 项目类别:
Deconvolution of Spherical Aberration in Confocal Microscopy of Thick Tissues
厚组织共焦显微镜中球面像差的反卷积
- 批准号:
7106694 - 财政年份:2006
- 资助金额:
$ 27.7万 - 项目类别:
Sub-Diffraction and Sub-Pixel Microscopic Deconvolution
亚衍射和亚像素显微反卷积
- 批准号:
6401366 - 财政年份:2001
- 资助金额:
$ 27.7万 - 项目类别:
Sub-Diffraction and Sub-Pixel Microscopic Deconvolution
亚衍射和亚像素显微反卷积
- 批准号:
7285666 - 财政年份:2001
- 资助金额:
$ 27.7万 - 项目类别:
Sub-Diffraction and Sub-Pixel Microscopic Deconvolution
亚衍射和亚像素显微反卷积
- 批准号:
7051337 - 财政年份:2001
- 资助金额:
$ 27.7万 - 项目类别:
AUTOMATED 3D TISSUE CHANGE DETECTION/QUANTIFICATION
自动 3D 组织变化检测/量化
- 批准号:
6656984 - 财政年份:1998
- 资助金额:
$ 27.7万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 27.7万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 27.7万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 27.7万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 27.7万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 27.7万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 27.7万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 27.7万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 27.7万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 27.7万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 27.7万 - 项目类别:
Continuing Grant














{{item.name}}会员




