SCIENTIFIC VISUALIZATION

科学可视化

基本信息

  • 批准号:
    7723091
  • 负责人:
  • 金额:
    $ 18.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Scientific visualization is concerned with helping researchers explore measured or simulated data to gain insight into structures and relationships within the data. The impact of scientific visualization can be seen in all areas of science, medicine, and engineering. A central aim of this core is to bring cutting-edge visualization research and technology to biomedical scientists. The goals of the visualization technology core are to develop and then to implement advanced, efficient, high-performance algorithms and software for visualizing large, spatially distributed and/or time varying data sets. In order to achieve its full potential as an effective scientific tool, visualization must be not just the natural end point of the biomedical computing pipeline but a ubiquitous component of every step within that pipeline: it must enable to user to see the data from raw images to finished simulation and then to visualize the errors and uncertainties that arise from the measurements and computations applied to those data. In order to achieve these goals, we aim to greatly increase the breadth and sophistication of visualization technologies available for biomedical researchers, first by leveraging existing expertise within the Scientific Computing and Imaging Institute, then by carrying out new research directed at such areas as time-dependent image data, flow fields from bioelectric fields and other ion-transport behaviors, diffusion weighted MRI image sets, and data error/uncertainty and by combining such data types into intuitive, quantitative, interactive displays. Three primary visualization goals focus on both research and development: (1) to research new visualization techniques for biomedical applications, (2) to develop visualization tools and software for biomedical visualization based upon state- of-the-art visualization research developed within the Scientific Computing and Imaging Institute and elsewhere, and (3) to leverage third-party visualization software to take advantage of existing software. These aims both reflect the existing expertise of the center's investigators and include substantial components that have originated with the collaborative projects. Such close research ties between the center and its collaborators will improve the quality of the projects by broadening the sources of feedback and intellectual contributions and so help to maximize their impact on the field. Our research will include new work directed at such areas as multi-dimensional transfer function volume visualization of image data, multi-field visualization for bioelectric fields and other ion-transport behaviors, visualization of diffusion weighted MRI, and the creation of new visual representations for data error/uncertainty in experimental and computational data sets. In addition to our research goals, we aim to develop a set of powerful, interactive, quantitative, usable, and integrated visualization tools for biomedical scientists. The utility and impact of the research lie not only in the specific techniques we propose to develop and implement, but also in the way that these techniques will be integrated into BioPSE. Some of the techniques will be tuned to the specific needs of our collaborators or the particular research or clinical application, and many others, such as the multi-dimensional volume rendering, error and uncertainty visualization, and multi-field visualization, will also be appropriate for a broader range of applications. As part of the BioPSE, BioImage, ImageVis3D, TensorVis3D, and Seg3D infrastructures, these techniques will become immediately available to all users of the software for a range of related purposes. Below we give a brief summary of the center's visualization research and development goals: 1. Investigate new diffusion tensor visualization and analysis techniques. 2. Develop and harden state-of-the-art Scientific Computing and Imaging visualization research prototypes in scalar, vector, and tensor field visualization into robust BioPSE components. 3. Supply techniques that support extensive and flexible examination of the quantitative aspects of bioelectric field data, such as voltage gradients and isochrone velocities. 4. Update the architecture of our "BioImage" software package transitioning to the "ImageVis3d" software package. 5. Expand the capabilities of map3d , especially in the areas of time-dependent geometry and multiple-data visualization to meet the needs of the collaborators and other users, especially those in application areas outside of bioelectric fields. 6. Develop visual methods for comparisons of simulation results based upon the proposed visual representation of error and uncertainty research. 7. Examine new file structures to better accommodate the growing size and complexity of biomedical images Investigate methods for visualizing the error and uncertainty produced by measurement, simulation, and visualization techniques.
这个子项目是许多研究子项目中的一个 由NIH/NCRR资助的中心赠款提供的资源。子项目和 研究者(PI)可能从另一个NIH来源获得了主要资金, 因此可以在其他CRISP条目中表示。所列机构为 研究中心,而研究中心不一定是研究者所在的机构。 科学可视化关注的是帮助研究人员探索测量或模拟数据,以深入了解 数据中的结构和关系。科学可视化的影响可以在所有科学领域看到, 医学和工程学 该核心的一个中心目标是将尖端的可视化研究和技术, 生物医学科学家 可视化技术的核心目标是开发并实现先进的、 高效、高性能的算法和软件,用于可视化大型、空间分布和/或时变数据 集. 为了充分发挥其作为有效科学工具的潜力,可视化必须不仅仅是自然的目的 生物医学计算管道的一个点,但管道内每一步的无处不在的组件:它必须使 用户可以看到从原始图像到完成的模拟的数据,然后可视化错误和不确定性, 产生于应用于这些数据的测量和计算。 为了实现这些目标,我们的目标是大大增加可视化技术的广度和复杂性 可供生物医学研究人员使用,首先是利用科学计算和成像领域的现有专业知识 研究所,然后通过开展新的研究,针对这些领域,如时间依赖的图像数据,流场, 生物电场和其他离子传输行为、扩散加权MRI图像集和数据误差/不确定性,以及 将这些数据类型组合成直观的、定量的、交互式的显示。 可视化研究和开发的主要目标有三个:(1)研究新的可视化技术 对于生物医学应用,(2)开发基于状态的生物医学可视化工具和软件, 在科学计算和成像研究所和其他地方开发的最先进的可视化研究,以及 (3)利用第三方可视化软件来充分利用现有软件。这些目标都反映了 该中心的调查人员的现有专业知识,包括大量的组成部分,起源于 合作项目。 中心与合作者之间如此密切的研究联系将提高 通过扩大反馈和智力贡献的来源,帮助最大限度地发挥项目的影响, 外地 我们的研究将包括针对多维传递函数体积等领域的新工作 图像数据的可视化,生物电场和其他离子传输行为的多场可视化,可视化 扩散加权MRI,并创建新的视觉表示的数据误差/不确定性,在实验和 计算数据集。 除了我们的研究目标,我们的目标是开发一套强大的,互动的,定量的,可用的,集成的 生物医学科学家的可视化工具。研究的效用和影响不仅在于具体的技术 我们建议开发和实施,而且这些技术将被集成到BioPSE中。一些 这些技术将根据我们合作者的具体需要或特定的研究或临床应用进行调整, 以及其他许多方面,如多维体绘制、误差和不确定性可视化、多场 可视化,也将适用于更广泛的应用。作为BioPSE、BioImage、ImageVis 3D的一部分, TensorVis 3D和Seg 3D基础设施,这些技术将立即提供给软件的所有用户 用于一系列相关目的。下面我们对该中心的可视化研究和发展进行简要总结 目标: 1.研究新的扩散张量可视化和分析技术。 2.在标量中开发和强化最先进的科学计算和成像可视化研究原型, 矢量和张量场可视化到强大的BioPSE组件。 3.提供技术,支持对生物电场数据的定量方面进行广泛和灵活的检查, 例如电压梯度和等时线速度。 4.更新我们的“BioImage”软件包的架构,过渡到“ImageVis 3d”软件包。 5.扩展map 3d的功能,特别是在时间相关几何和多数据可视化领域 以满足合作者和其他用户的需求,特别是那些在生物电场之外的应用领域的需求。 6.根据提出的误差可视化表示法,开发可视化方法,用于比较模拟结果 不确定性研究。 7.检查新的文件结构,以更好地适应生物医学图像不断增长的大小和复杂性 研究测量、模拟和可视化产生的误差和不确定性的可视化方法 技术.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHRISTOPHER R. JOHNSON其他文献

CHRISTOPHER R. JOHNSON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CHRISTOPHER R. JOHNSON', 18)}}的其他基金

Center for Integrative Biomedical Computing Legacy Transition
综合生物医学计算传统过渡中心
  • 批准号:
    10402301
  • 财政年份:
    2020
  • 资助金额:
    $ 18.85万
  • 项目类别:
Center for Integrative Biomedical Computing Legacy Transition
综合生物医学计算传统过渡中心
  • 批准号:
    10400527
  • 财政年份:
    2020
  • 资助金额:
    $ 18.85万
  • 项目类别:
BAYESIAN SOURCE IMAGING OF PEDIATRIC EPILEPSY
小儿癫痫的贝叶斯源成像
  • 批准号:
    8363719
  • 财政年份:
    2011
  • 资助金额:
    $ 18.85万
  • 项目类别:
VISUALIZATION
可视化
  • 批准号:
    8363709
  • 财政年份:
    2011
  • 资助金额:
    $ 18.85万
  • 项目类别:
SCIENTIFIC VISUALIZATION
科学可视化
  • 批准号:
    8172255
  • 财政年份:
    2010
  • 资助金额:
    $ 18.85万
  • 项目类别:
Center for Integrative Biomedical Computing
综合生物医学计算中心
  • 批准号:
    8141546
  • 财政年份:
    2010
  • 资助金额:
    $ 18.85万
  • 项目类别:
CT IMAGING OF BLOOD VESSEL IN TRANSGENIC MOUSE MODELS FOR HUMAN TUMORS
人类肿瘤转基因小鼠模型中血管的 CT 成像
  • 批准号:
    7957217
  • 财政年份:
    2009
  • 资助金额:
    $ 18.85万
  • 项目类别:
Center for Integrative Biomedical Computing
综合生物医学计算中心
  • 批准号:
    7931417
  • 财政年份:
    2009
  • 资助金额:
    $ 18.85万
  • 项目类别:
SCIENTIFIC VISUALIZATION
科学可视化
  • 批准号:
    7957213
  • 财政年份:
    2009
  • 资助金额:
    $ 18.85万
  • 项目类别:
CT IMAGING OF BLOOD VESSEL IN TRANSGENIC MOUSE MODELS FOR HUMAN TUMORS
人类肿瘤转基因小鼠模型中血管的 CT 成像
  • 批准号:
    7723096
  • 财政年份:
    2008
  • 资助金额:
    $ 18.85万
  • 项目类别:

相似海外基金

Practical Study on Disaster Countermeasure Architecture Model by Sustainable Design in Asian Flood Area
亚洲洪泛区可持续设计防灾建筑模型实践研究
  • 批准号:
    17K00727
  • 财政年份:
    2017
  • 资助金额:
    $ 18.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Functional architecture of a face processing area in the common marmoset
普通狨猴面部处理区域的功能架构
  • 批准号:
    9764503
  • 财政年份:
    2016
  • 资助金额:
    $ 18.85万
  • 项目类别:
SBIR Phase II: Area and Energy Efficient Error Floor Free Low-Density Parity-Check Codes Decoder Architecture for Flash Based Storage
SBIR 第二阶段:用于基于闪存的存储的面积和能源效率高、无错误层的低密度奇偶校验码解码器架构
  • 批准号:
    1632562
  • 财政年份:
    2016
  • 资助金额:
    $ 18.85万
  • 项目类别:
    Standard Grant
Heating and airconditioning by hypocausts in residential and representative architecture in Rome and Latium studies of a phenomenon of luxury in a favoured climatic area of the Roman Empire on the basis of selected examples.
罗马和拉齐奥的住宅和代表性建筑中的火烧供暖和空调根据选定的例子,研究了罗马帝国有利的气候地区的奢华现象。
  • 批准号:
    317469425
  • 财政年份:
    2016
  • 资助金额:
    $ 18.85万
  • 项目类别:
    Research Grants
SBIR Phase I: Area and Energy Efficient Error Floor Free Low-Density Parity-Check Codes Decoder Architecture for Flash Based Storage
SBIR 第一阶段:用于基于闪存的存储的面积和能源效率高、无错误层低密度奇偶校验码解码器架构
  • 批准号:
    1520137
  • 财政年份:
    2015
  • 资助金额:
    $ 18.85万
  • 项目类别:
    Standard Grant
A Study on The Spatial Setting and The Inhavitant's of The Flood Prevention Architecture in The Flood Area
洪泛区防洪建筑空间设置及居民生活研究
  • 批准号:
    26420620
  • 财政年份:
    2014
  • 资助金额:
    $ 18.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
  • 批准号:
    327691-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 18.85万
  • 项目类别:
    Discovery Grants Program - Individual
A FUNDAMENTAL STUDY ON UTILIZATION OF THE POST-WAR ARCHITECTURE AS URBAN REGENERATION METHOD, A case of the central area of Osaka city
战后建筑作为城市更新方法的基础研究——以大阪市中心区为例
  • 批准号:
    22760469
  • 财政年份:
    2010
  • 资助金额:
    $ 18.85万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
  • 批准号:
    327691-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 18.85万
  • 项目类别:
    Discovery Grants Program - Individual
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
  • 批准号:
    327691-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 18.85万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了