Elucidation of the molecular basis of pseudoresistance to antibiotics in Staphylococcus aureus

阐明金黄色葡萄球菌对抗生素假耐药性的分子基础

基本信息

  • 批准号:
    G0501247/1
  • 负责人:
  • 金额:
    $ 38.35万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

The discovery of antibiotics in the early part of the 20th century made possible for the first time the treatment and cure of bacterial infections, and heralded a new era for humanity. However, the utility of these compounds has been progressively eroded as bacteria have evolved to resist their effects. Increases in antibiotic resistance prevent effective treatment of bacterial infections, and are associated with significantly greater illness and death of patients. Consequently, major strain is placed on the healthcare system and the adverse effects are felt throughout society as a whole. This is especially true for what is arguably the most important ?superbug?, Staphylococcus aureus. This organism causes a wider array of infections than any other bacterium, and the number of effective drugs available to treat the infections it causes is rapidly dwindling. Ordinarily, S. aureus becomes resistant as a result of permanent changes to its genetic make-up that allow it to grow in the presence of antibiotics. However, all S. aureus strains frequently display ?pseudoresistance? (PR) to antibiotics, a state in which the bacteria are unable to grow but are not killed, allowing them to resume growth when antibiotic treatment stops. The most important of these PR mechanisms are biofilms and antibiotic tolerance. The former describes films of bacteria growing on biological or inert surfaces (e.g. human tissue, indwelling medical devices), while the latter describes a type of PR which can be achieved by more than one route. These PR mechanisms are extremely important, since they occur frequently (e.g. biofilms occur in two-thirds of human infections, and tolerance is seen in two-thirds of strains isolated from patients with a S. aureus heart-valve infection), and both result in treatment failure with antibiotics. This project aims to understand exactly how these PR mechanisms prevent antibiotics from effectively killing bacteria. This information is essential for guiding the development of strategies and/or drugs that could allow PR to be circumvented. Dissection of the molecular basis of PR will shed light on bacterial processes that can be blocked or perhaps themselves be targeted by new antibacterial drugs. The potential for developing strategies aimed at preventing the formation of intractable biofilms on medical devices such as intravenous catheters, an extremely common cause of hospital infection, will be particularly valuable.
世纪早期抗生素的发现首次使细菌感染的治疗和治愈成为可能,并预示着人类进入了一个新时代。然而,这些化合物的效用已逐渐受到侵蚀,因为细菌已经进化到抵抗它们的作用。抗生素耐药性的增加阻碍了细菌感染的有效治疗,并与患者的疾病和死亡显著增加有关。因此,卫生保健系统承受了巨大的压力,整个社会都感受到了不利影响。对于可以说是最重要的东西来说,这一点尤其如此。超级细菌?金黄色葡萄球菌。这种微生物引起的感染比任何其他细菌都要广泛,并且可用于治疗它引起的感染的有效药物的数量正在迅速减少。通常,S。金黄色葡萄球菌由于其遗传组成的永久性变化而产生耐药性,使其能够在抗生素存在下生长。然而,所有S。金黄色葡萄球菌菌株经常显示?伪抵抗(PR)抗生素,在这种状态下,细菌无法生长,但没有被杀死,使它们能够在抗生素治疗停止时恢复生长。这些PR机制中最重要的是生物膜和抗生素耐受性。前者描述了在生物或惰性表面(例如人体组织,留置医疗器械)上生长的细菌膜,而后者描述了一种可以通过多种途径实现的PR类型。这些PR机制非常重要,因为它们经常发生(例如,生物膜出现在三分之二的人类感染中,并且在三分之二的从S.金黄色葡萄球菌心脏瓣膜感染),并且两者都导致抗生素治疗失败。该项目旨在确切了解这些PR机制如何阻止抗生素有效杀死细菌。这些信息对于指导开发可以规避PR的策略和/或药物至关重要。对PR分子基础的剖析将揭示可以被阻断的细菌过程,或者它们本身可能被新的抗菌药物靶向。开发旨在预防静脉内导管等医疗器械上形成难治性生物膜的策略的潜力将特别有价值,这是医院感染的一个非常常见的原因。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alex O'Neill其他文献

Direct observations of a Mt Everest snowstorm from the world's highest surface‐based radar observations
通过世界上最高的地面雷达观测直接观测珠穆朗玛峰暴风雪
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    L. B. Perry;S. Yuter;T. Matthews;P. Wagnon;Arbindra Khadka;D. Aryal;D. Shrestha;A. Tait;M. A. Miller;Alex O'Neill;S. Rhodes;I. Koch;Tenzing G. Sherpa;Subash Tuladhar;S. Baidya;S. Elvin;A. Elmore;A. Gajurel;P. Mayewski
  • 通讯作者:
    P. Mayewski
Drivers and deterrents of entrepreneurial enterprise in the risk‐prone Global South
风险高发的南方国家创业企业的驱动因素和阻碍因素
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brandon D. Lundy;Mark W. Patterson;Alex O'Neill
  • 通讯作者:
    Alex O'Neill

Alex O'Neill的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alex O'Neill', 18)}}的其他基金

Understanding antibiotic entry into bacteria
了解抗生素进入细菌
  • 批准号:
    BB/R004048/1
  • 财政年份:
    2018
  • 资助金额:
    $ 38.35万
  • 项目类别:
    Research Grant
'Silent' antibiotic resistance genes: an overlooked issue of considerable importance in antibacterial chemotherapy?
“沉默的”抗生素抗性基因:抗菌化疗中一个被忽视但相当重要的问题?
  • 批准号:
    MR/M017710/1
  • 财政年份:
    2015
  • 资助金额:
    $ 38.35万
  • 项目类别:
    Research Grant
MICA: Revisiting unexploited natural product antibiotics in the fight against multidrug-resistant bacterial pathogens
MICA:重新审视未开发的天然产物抗生素来对抗多重耐药细菌病原体
  • 批准号:
    MR/L000369/1
  • 财政年份:
    2013
  • 资助金额:
    $ 38.35万
  • 项目类别:
    Research Grant
Molecular dissection of a novel protein-protein interaction: structure and mechanism of the staphylococcal fusidic acid-resistance protein FusB
新型蛋白质-蛋白质相互作用的分子解析:葡萄球菌夫西地酸抗性蛋白FusB的结构和机制
  • 批准号:
    BB/H018433/1
  • 财政年份:
    2010
  • 资助金额:
    $ 38.35万
  • 项目类别:
    Research Grant

相似国自然基金

配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
  • 批准号:
    82371616
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
  • 批准号:
    82370981
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
PET/MR多模态分子影像在阿尔茨海默病炎症机制中的研究
  • 批准号:
    82372073
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
  • 批准号:
    82371652
  • 批准年份:
    2023
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目
靶向PARylation介导的DNA损伤修复途径在恶性肿瘤治疗中的作用与分子机制研究
  • 批准号:
    82373145
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
O6-methyl-dGTP抑制胶质母细胞瘤的作用及分子机制研究
  • 批准号:
    82304565
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
OBSL1功能缺失导致多指(趾)畸形的分子机制及其临床诊断价值
  • 批准号:
    82372328
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Irisin通过整合素调控黄河鲤肌纤维发育的分子机制研究
  • 批准号:
    32303019
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
转录因子LEF1低表达抑制HMGB1致子宫腺肌病患者子宫内膜容受性低下的分子机制
  • 批准号:
    82371704
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
上皮细胞黏着结构半桥粒在热激保护中的作用机制研究
  • 批准号:
    31900545
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Involvement of astrocyte in hippocampal neurogenesis in the neuropathic pain and elucidation of the molecular basis
星形胶质细胞参与神经性疼痛海马神经发生及其分子基础的阐明
  • 批准号:
    23K08370
  • 财政年份:
    2023
  • 资助金额:
    $ 38.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of substrate recognition mechanism of SLC19A3 to establish the molecular basis for medical applications
阐明SLC19A3的底物识别机制,为医学应用奠定分子基础
  • 批准号:
    23K06283
  • 财政年份:
    2023
  • 资助金额:
    $ 38.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of Molecular Basis for Myocardial Fibrosis in Dilated Cardiomyopathy
扩张型心肌病心肌纤维化的分子基础阐明
  • 批准号:
    23K15174
  • 财政年份:
    2023
  • 资助金额:
    $ 38.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of molecular basis of Streptomyces signaling-molecule-dependent regulatory pathway and activation of silent secondary metabolite biosynthetic genes
阐明链霉菌信号分子依赖性调控途径的分子基础和沉默次级代谢产物生物合成基因的激活
  • 批准号:
    22H02274
  • 财政年份:
    2022
  • 资助金额:
    $ 38.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of the molecular and neural basis that controls the environmental factor-dependent forgetting mechanism
阐明控制环境因素依赖性遗忘机制的分子和神经基础
  • 批准号:
    22H02715
  • 财政年份:
    2022
  • 资助金额:
    $ 38.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of the molecular basis of oral-renal association by periodontal disease exosomes in exacerbation of diabetes and complications of nephropathy
牙周病外泌体阐明糖尿病恶化和肾病并发症中口腔-肾脏关联的分子基础
  • 批准号:
    22H03302
  • 财政年份:
    2022
  • 资助金额:
    $ 38.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of neural and molecular basis underlying antidepressant effect of serotonergic psychedelics
阐明血清素能迷幻药抗抑郁作用的神经和分子基础
  • 批准号:
    22K06872
  • 财政年份:
    2022
  • 资助金额:
    $ 38.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of the molecular basis of crosstalk between metabolism and inflammation in vascular endothelial cell activation
阐明血管内皮细胞活化中代谢与炎症之间串扰的分子基础
  • 批准号:
    22H02891
  • 财政年份:
    2022
  • 资助金额:
    $ 38.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of the molecular basis for age-dependent leukemogenesis towards a novel therapeutic strategy
阐明年龄依赖性白血病发生的分子基础以制定新的治疗策略
  • 批准号:
    22H02904
  • 财政年份:
    2022
  • 资助金额:
    $ 38.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of molecular basis of GALT formation using novel Peyer's patch deficient mice
使用新型派尔氏集结缺陷小鼠阐明 GALT 形成的分子基础
  • 批准号:
    22H02822
  • 财政年份:
    2022
  • 资助金额:
    $ 38.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了