OPTIMIZING SEARCH CONDITIONS FOR THE MASS FINGERPRINT-BASED ID OF PROTEINS
优化基于质量指纹的蛋白质识别的搜索条件
基本信息
- 批准号:7954115
- 负责人:
- 金额:$ 0.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-03-01 至 2010-02-28
- 项目状态:已结题
- 来源:
- 关键词:AlbuminsAlgorithmsAmino Acid SequenceClassificationCollectionComputer Retrieval of Information on Scientific Projects DatabaseDataFingerprintFundingGrantHumanInstitutionOutcomePeptide Sequence DeterminationPeptidesPlasmaPlasma ProteinsProbabilityProceduresProteinsProteomeReportingResearchResearch PersonnelResourcesSiteSourceTestingUnited States National Institutes of Healthbasehelix-loop-helix protein differentiation inhibitorimprovedmacromoleculeresearch study
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
The two central problems in protein identification by searching a protein sequence collection with MS data are the optimal use of experimental information to allow for identification of low abundance proteins and the accurate assignment of the probability that a result is false. For comprehensive MS-based protein identification, it is necessary to choose an appropriate algorithm and optimal search conditions. We report a systematic study of the quality of PMF-based protein identifications under different sequence collection search conditions using the Probability algorithm, which assigns the statistical significance to each result. We employed 2244 PMFs from 2-DE-separated human blood plasma proteins, and performed identification under various search constraints: mass accuracy (0.01-0.3 Da), maximum number of missed cleavage sites (0-2), and size of the sequence collection searched (5.6 x 10(4)-1.8 x 10(5)). By counting the number of significant results (significance levels 0.05, 0.01, and 0.001) for each condition, we demonstrate the search condition impact on the successful outcome of proteome analysis experiments. A mass correction procedure utilizing mass deviations of albumin matching peptides was tested in an attempt to improve the statistical significance of identifications and iterative searching was employed for identification of multiple proteins from each PMF.
这个子项目是许多研究子项目中的一个
由NIH/NCRR资助的中心赠款提供的资源。子项目和
研究者(PI)可能从另一个NIH来源获得了主要资金,
因此可以在其他CRISP条目中表示。所列机构为
研究中心,而研究中心不一定是研究者所在的机构。
通过用MS数据搜索蛋白质序列集合进行蛋白质鉴定的两个中心问题是实验信息的最佳使用以允许鉴定低丰度蛋白质和准确分配结果为假的概率。对于基于质谱的蛋白质鉴定,需要选择合适的算法和最优的搜索条件。我们报告了一个系统的研究质量的PMF为基础的蛋白质鉴定在不同的序列收集搜索条件下,使用概率算法,分配的统计意义,每个结果。我们使用了2244个来自2-DE分离的人血浆蛋白的PMF,并在各种搜索约束条件下进行鉴定:质量准确度(0.01-0.3 Da),缺失切割位点的最大数量(0-2),以及搜索的序列集合的大小(5.6 x 10(4)-1.8 x 10(5))。通过计算每个条件下显著结果的数量(显著性水平0.05,0.01和0.001),我们证明了搜索条件对蛋白质组分析实验成功结果的影响。利用白蛋白匹配肽的质量偏差的质量校正程序进行了测试,试图提高鉴定的统计学意义,并采用迭代搜索来鉴定来自每个PMF的多种蛋白质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Fenyo其他文献
David Fenyo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Fenyo', 18)}}的其他基金
Protein Sequencing Tools for Biological Therapeutics
用于生物治疗的蛋白质测序工具
- 批准号:
8315630 - 财政年份:2012
- 资助金额:
$ 0.36万 - 项目类别:
Protein Sequencing Tools for Biological Therapeutics
用于生物治疗的蛋白质测序工具
- 批准号:
8731420 - 财政年份:2012
- 资助金额:
$ 0.36万 - 项目类别:
Protein Sequencing Tools for Biological Therapeutics
用于生物治疗的蛋白质测序工具
- 批准号:
8979388 - 财政年份:2012
- 资助金额:
$ 0.36万 - 项目类别:
Protein Sequencing Tools for Biological Therapeutics
用于生物治疗的蛋白质测序工具
- 批准号:
8539637 - 财政年份:2012
- 资助金额:
$ 0.36万 - 项目类别:
AUTOMATIC PEAK FINDING AND DATABASE SEARCH USING RAW MALDI-LTQ-ORBITRAP DATA
使用原始 MALDI-LTQ-ORBITRAP 数据自动找峰和数据库搜索
- 批准号:
8361585 - 财政年份:2011
- 资助金额:
$ 0.36万 - 项目类别:
DETECTION AND CORRECTION OF INTERFERENCE IN MRM ANALYSIS
MRM 分析中干扰的检测和校正
- 批准号:
8361582 - 财政年份:2011
- 资助金额:
$ 0.36万 - 项目类别:
STATISTICAL BASIS FOR DETERMINING SIGNIFICANCE OF LOCALIZATION OF MODIFICATIONS
确定修改本地化重要性的统计基础
- 批准号:
8361583 - 财政年份:2011
- 资助金额:
$ 0.36万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 0.36万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 0.36万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 0.36万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 0.36万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 0.36万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 0.36万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 0.36万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 0.36万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 0.36万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 0.36万 - 项目类别:
Research Grant














{{item.name}}会员




