AUTOMATED MOTIF DETERMINATION IN ANTIGENIC PEPTIDES
抗原肽中的自动基序测定
基本信息
- 批准号:7953899
- 负责人:
- 金额:$ 0.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-02-01 至 2010-01-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsAllelesAmino AcidsAutoimmune DiseasesBindingCell LineCell physiologyCell surfaceCellsComplexComputer Retrieval of Information on Scientific Projects DatabaseEnzymesFundingGrantImmune responseIndividualInstitutionInvestigationLengthMajor Histocompatibility ComplexMass Spectrum AnalysisMethodsMolecular ChaperonesMutatePeptidesProcessProteinsResearchResearch PersonnelResourcesSorting - Cell MovementSourceStructureT-LymphocyteTestingTimeUnited States National Institutes of Healthbasebiomedical resourcecomputer programnanopeptide Aprotein aminoacid sequencetandem mass spectrometry
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
Peptides are found on the surface of cells bound to the Major Histocompatibility Complex (MHC). These complexes are interrogated by T-cells to determine an immune response. The repertoire of the peptides sequences is determined by the binding constant of the peptide to the individual MHC (class I or II and the particular allele) and by the cell processing mechanisms (catabolic enzymes, chaperons). Determination of a sequence motif to these peptides has implications in finding peptides and proteins that trigger autoimmune diseases and in developing vaccins.
Motif determination involves isolating and sequencing large number of peptides using nano-HPLC and tandem mass spectrometry from a cell line bearing a particular MHC. The long lists of peptides are sorted manually, motif hypothesises are suggested and tested using binding studies of mutated peptides. The motif can be refined by studying crystal structures of the complex, if it is available. This process can be very time and labor consuming. Also, binding studies don''t take into account the influence of other cell selection mechanisms.
A new method for finding a sequence motif is suggested. It is based on finding it automatically using the isolated peptides sequences. Using a computer program the SW local alignment (with affine gap) of all peptides is maximized in finding of an average sequence. This average sequence is used in finding the binding core length of the peptide to the complex and to align each peptide sequence with the correct binding pockets of the protein in the complex. Statistical analysis of the amino acid content of each pocket reveals the motif. The influence of alignment parameters such as substitution matrixes and gap penalties is under investigation. Also the utility of a clustering algorithm to eliminate outliers and reveal multiple motifs is studied.
该子项目是利用该技术的众多研究子项目之一
资源由 NIH/NCRR 资助的中心拨款提供。子项目和
研究者 (PI) 可能已从 NIH 的另一个来源获得主要资金,
因此可以在其他 CRISP 条目中表示。列出的机构是
对于中心来说,它不一定是研究者的机构。
在与主要组织相容性复合物 (MHC) 结合的细胞表面发现了肽。 T 细胞会询问这些复合物以确定免疫反应。肽序列的全部内容由肽与个体 MHC(I 类或 II 类和特定等位基因)的结合常数以及细胞加工机制(分解代谢酶、伴侣)决定。确定这些肽的序列基序对于寻找引发自身免疫性疾病的肽和蛋白质以及开发疫苗具有重要意义。
基序测定涉及使用纳米 HPLC 和串联质谱法从带有特定 MHC 的细胞系中分离和测序大量肽。手动对一长串肽进行排序,提出基序假设并使用突变肽的结合研究进行测试。如果有的话,可以通过研究复合物的晶体结构来完善该图案。这个过程可能非常耗时和费力。此外,结合研究没有考虑其他细胞选择机制的影响。
提出了一种寻找序列基序的新方法。它基于使用分离的肽序列自动找到它。使用计算机程序,所有肽的 SW 局部比对(具有仿射间隙)在寻找平均序列时得到最大化。该平均序列用于确定肽与复合物的结合核心长度,并将每个肽序列与复合物中蛋白质的正确结合袋进行比对。对每个口袋的氨基酸含量的统计分析揭示了该基序。替换矩阵和空位罚分等比对参数的影响正在研究中。还研究了聚类算法消除异常值和揭示多个主题的实用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ILAN VIDAVSKY其他文献
ILAN VIDAVSKY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ILAN VIDAVSKY', 18)}}的其他基金
OPERATION AND MAINTENANCE OF A PROTEIN DATABASE SEARCH SERVER
蛋白质数据库检索服务器的运维
- 批准号:
8361358 - 财政年份:2011
- 资助金额:
$ 0.01万 - 项目类别:
OPERATION AND MAINTENANCE OF A PROTEIN DATABASE SEARCH SERVER
蛋白质数据库检索服务器的运维
- 批准号:
8168709 - 财政年份:2010
- 资助金额:
$ 0.01万 - 项目类别:
AUTOMATED FINDING OF MODIFIED PEPTIDES FROM TANDEM MS
从串联质谱仪中自动寻找修饰肽
- 批准号:
7953908 - 财政年份:2009
- 资助金额:
$ 0.01万 - 项目类别:
DEVELOPMENT OF PROTEIN TOOL BOX SOFTWARE MODULES
蛋白质工具箱软件模块的开发
- 批准号:
7953954 - 财政年份:2009
- 资助金额:
$ 0.01万 - 项目类别:
OPERATION AND MAINTENANCE OF A PROTEIN DATABASE SEARCH SERVER
蛋白质数据库检索服务器的运维
- 批准号:
7953924 - 财政年份:2009
- 资助金额:
$ 0.01万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 0.01万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 0.01万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 0.01万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 0.01万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 0.01万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 0.01万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 0.01万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 0.01万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 0.01万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 0.01万 - 项目类别:
Research Grant