Matrix-mediated endothelial differentiation of induced pluripotent stem cells
基质介导的诱导多能干细胞的内皮分化
基本信息
- 批准号:7989804
- 负责人:
- 金额:$ 13.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelArterial Occlusive DiseasesBiocompatible MaterialsBiologicalBiological ProcessBiologyBioluminescenceBiomedical EngineeringBiometryBlood VesselsBlood capillariesCardiovascular systemCell Differentiation processCell LineageCell MaintenanceCell SurvivalCell TherapyCell physiologyCellsCellular biologyClinicalCuesCytoskeletonDevelopmentDiseaseEmbryonic DevelopmentEndothelial CellsEndotheliumExtracellular MatrixFoundationsFunctional disorderGoalsHindlimbHistologicHumanHypoxiaImageIn VitroInjuryIntegrinsIschemiaIsolated limb perfusionKnowledgeLasersLeadMaintenanceMediatingMethodsModelingMolecularMusNatural regenerationPeripheral arterial diseasePhenotypePluripotent Stem CellsPostdoctoral FellowProcessPublic HealthRegulationResearchResearch PersonnelRoleSecondary toSerumSignal PathwaySignal TransductionSiteSomatic CellSourceSpectrum AnalysisStagingStem Cell DevelopmentStem cellsSupporting CellTechniquesTeratomaTherapeuticTimeTissue EngineeringTissuesTrainingUniversitiesVascular DiseasesVascular Endothelial CellVascular Endotheliumangiogenesisbaseblood perfusioncapillarycareercell behaviordensityfunctional improvementimprovedinduced pluripotent stem cellinsightinterestmedical schoolsnutritionprogenitorpublic health relevancereceptorrepairedresponsescaffoldself-renewalstemsuccess
项目摘要
DESCRIPTION (provided by applicant): Over 8 million people in the US suffer from peripheral arterial disease (PAD). A feature of PAD is dysfunction or damage to the vascular endothelium, a layer of endothelial cells (ECs) that exerts control over vascular reactivity, remodeling and angiogenesis. Cell-based approaches to restore or regenerate the endothelium so as to enhance the angiogenic response to ischemia hold promise for the treatment of PAD. A candidate source of ECs is induced pluripotent stem cells (iPSCs), which are derived from reprogrammed somatic cells. The iPSCs maintain unlimited self renewal and the ability to differentiate into cardiovascular lineages, including ECs. In order to utilize iPSCs therapeutically, the cells must first be differentiated into the lineage of interest and then delivered efficiently to the site of ischemic disease. Stem cell phenotype and function are influenced by microenvironmental cues including the extracellular matrix (ECM), a biological scaffolding material that provides structural support and modulates cellular function and phenotype. ECM regulation of cell behavior is mediated by integrin transmembrane receptors that connect the ECM to the intracellular cytoskeleton and activate downstream signaling pathways. ECMs have been shown to enhance the yields of EC lineages of pluripotent stem cells, but whether these ECMs are optimal for EC differentiation is unknown because there has been no systematic study to assess the role of matrix-mediated differentiation. The goal of this project is to define the role of ECMs in the differentiation of iPSCs into ECs, maintenance of EC phenotype, and therapeutic enhancement of angiogenesis in animal models of PAD. This project will utilize a high-throughput ECM microarray platform to optimize the efficiency of matrix-mediated iPSC differentiation into ECs. The mechanistic role of ECM-integrin interactions during EC differentiation and maintenance will also be examined. Finally, iPSC-derived ECs and ECMs will be assessed in animal models of PAD for vascular regeneration. By gaining fundamental insights into mechanisms of ECM-mediated differentiation and angiogenic function, the applicant intends to provide a stronger foundation of knowledge and improved methods for the clinical development and application of iPSC-derived ECs for vascular repair. The applicant seeks to establish a tenure-track academic career in advancing the treatment of vascular diseases using bioengineering and molecular cell biology techniques. The applicant is a postdoctoral fellow in the Stanford University School of Medicine, where she is being trained in stem cell and molecular cellular techniques in the research group of Dr. John Cooke, a well-established investigator in the field of endothelial biology and PAD therapies. Additional guidance in her training and transition to independence will be provided by renowned experts in the fields of stem cell development, matrix biology, tissue engineering, biomaterials, and biostatistics.
PUBLIC HEALTH RELEVANCE: The goal of this project is to define the role of extracellular matrices in the differentiation of induced pluripotent stem cells into endothelial cells, maintenance of endothelial phenotype, and therapeutic enhancement of angiogenesis for repair of peripheral arterial disease. This project can result in the development of new treatments to repair vascular diseases, which has far-reaching impact on public health.
描述(由申请人提供):美国有超过800万人患有外周动脉疾病(PAD)。PAD的一个特征是对血管内皮的功能障碍或损伤,血管内皮是对血管反应性、重塑和血管生成施加控制的内皮细胞(EC)层。以细胞为基础的方法来恢复或再生内皮,以增强对缺血的血管生成反应,有望治疗PAD。EC的候选来源是诱导多能干细胞(iPSC),其来源于重编程的体细胞。iPSC保持无限的自我更新和分化成心血管谱系的能力,包括EC。为了在治疗上利用iPSC,细胞必须首先分化成感兴趣的谱系,然后有效地递送到缺血性疾病的部位。干细胞的表型和功能受到微环境因素的影响,包括细胞外基质(ECM),一种提供结构支持并调节细胞功能和表型的生物支架材料。ECM对细胞行为的调节由整合素跨膜受体介导,整合素跨膜受体将ECM连接到细胞内细胞骨架并激活下游信号传导途径。ECM已被证明可以提高多能干细胞的EC谱系的产量,但这些ECM是否是EC分化的最佳选择尚不清楚,因为还没有系统的研究来评估基质介导的分化的作用。 该项目的目标是确定ECM在iPSC分化为EC、维持EC表型和PAD动物模型中血管生成的治疗增强中的作用。该项目将利用高通量ECM微阵列平台来优化基质介导的iPSC分化为EC的效率。还将研究EC分化和维持过程中ECM-整合素相互作用的机制作用。最后,将在PAD的动物模型中评估iPSC衍生的EC和ECM的血管再生。通过获得对ECM介导的分化和血管生成功能机制的基本见解,申请人打算为iPSC衍生的EC用于血管修复的临床开发和应用提供更坚实的知识基础和改进的方法。 申请人寻求建立一个终身制的学术生涯,在推进血管疾病的治疗使用生物工程和分子细胞生物学技术。申请人是斯坦福大学医学院的博士后研究员,她正在John Cooke博士的研究小组接受干细胞和分子细胞技术培训,John Cooke博士是内皮生物学和PAD治疗领域的知名研究者。在她的培训和过渡到独立的额外指导将由著名的专家在干细胞开发,基质生物学,组织工程,生物材料和生物统计学领域提供。
公共卫生关系:本项目的目标是确定细胞外基质在诱导多能干细胞分化为内皮细胞、维持内皮细胞表型和治疗性增强血管生成以修复外周动脉疾病中的作用。该项目可能导致开发新的治疗方法来修复血管疾病,这对公共卫生产生深远的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ngan F. Huang其他文献
Combinatorial extracellular matrix tissue chips for optimizing mesenchymal stromal cell microenvironment and manufacturing
用于优化间充质基质细胞微环境及制造的组合型细胞外基质组织芯片
- DOI:
10.1038/s41536-025-00408-z - 发表时间:
2025-04-22 - 期刊:
- 影响因子:6.500
- 作者:
Ishita Jain;Alex H. P. Chan;Guang Yang;Hao He;Johnny Lam;Kyung Sung;Ngan F. Huang - 通讯作者:
Ngan F. Huang
A mouse model of volumetric muscle loss and therapeutic scaffold implantation
容积性肌肉缺失和治疗性支架植入的小鼠模型
- DOI:
10.1038/s41596-024-01059-y - 发表时间:
2024-10-18 - 期刊:
- 影响因子:16.000
- 作者:
Caroline Hu;Gladys Chiang;Alex H.-P. Chan;Cynthia Alcazar;Karina H. Nakayama;Marco Quarta;Thomas A. Rando;Ngan F. Huang - 通讯作者:
Ngan F. Huang
Overcoming big bottlenecks in vascular regeneration
克服血管再生中的重大瓶颈
- DOI:
10.1038/s42003-024-06567-x - 发表时间:
2024-07-18 - 期刊:
- 影响因子:5.100
- 作者:
Dalia A. Fantini;Guang Yang;Astha Khanna;Divya Subramanian;Julie A. Phillippi;Ngan F. Huang - 通讯作者:
Ngan F. Huang
Bioinstructive scaffolds enhance stem cell engraftment for functional tissue regeneration
生物诱导支架可增强干细胞植入以实现功能性组织再生
- DOI:
10.1038/s41563-025-02212-y - 发表时间:
2025-04-17 - 期刊:
- 影响因子:38.500
- 作者:
Di Wu;Ioannis Eugenis;Caroline Hu;Soochi Kim;Abhijnya Kanugovi;Shouzheng Yue;Joshua R. Wheeler;Iman Fathali;Sonali Feeley;Joseph B. Shrager;Ngan F. Huang;Thomas A. Rando - 通讯作者:
Thomas A. Rando
Ngan F. Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ngan F. Huang', 18)}}的其他基金
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10703808 - 财政年份:2023
- 资助金额:
$ 13.28万 - 项目类别:
Novel Highly Regenerative and Scalable Progenitor Cell Exosomes for Treating Peripheral Artery Disease
用于治疗外周动脉疾病的新型高度再生和可扩展的祖细胞外泌体
- 批准号:
10759902 - 财政年份:2023
- 资助金额:
$ 13.28万 - 项目类别:
Engineering Vascularized Skeletal Muscle for Treatment of Volumetric Muscle Loss
工程血管化骨骼肌用于治疗体积性肌肉损失
- 批准号:
10158427 - 财政年份:2019
- 资助金额:
$ 13.28万 - 项目类别:
Engineering Vascularized Skeletal Muscle for Treatment of Volumetric Muscle Loss
工程血管化骨骼肌用于治疗体积性肌肉损失
- 批准号:
10386908 - 财政年份:2019
- 资助金额:
$ 13.28万 - 项目类别:
Aligned Nanofibrillar Scaffolds Enhance Angiogenesis and Viability in Ischemia
对齐的纳米纤维支架增强缺血中的血管生成和活力
- 批准号:
9208640 - 财政年份:2016
- 资助金额:
$ 13.28万 - 项目类别:
Muscle stem cell therapy for volumetric muscle loss
肌肉干细胞疗法治疗体积性肌肉损失
- 批准号:
10284923 - 财政年份:2014
- 资助金额:
$ 13.28万 - 项目类别:
Muscle stem cell therapy for volumetric muscle loss
肌肉干细胞疗法治疗体积性肌肉损失
- 批准号:
10631859 - 财政年份:2014
- 资助金额:
$ 13.28万 - 项目类别:
Matrix-mediated endothelial differentiation of induced pluripotent stem cells
基质介导的诱导多能干细胞的内皮分化
- 批准号:
8133483 - 财政年份:2010
- 资助金额:
$ 13.28万 - 项目类别:
Matrix-mediated endothelial differentiation of induced pluripotent stem cells
基质介导的诱导多能干细胞的内皮分化
- 批准号:
8626434 - 财政年份:2010
- 资助金额:
$ 13.28万 - 项目类别:
Matrix-mediated endothelial differentiation of induced pluripotent stem cells
基质介导的诱导多能干细胞的内皮分化
- 批准号:
8594408 - 财政年份:2010
- 资助金额:
$ 13.28万 - 项目类别:
相似海外基金
Experimental Study on Peripheral Hemodynamics in Chronic Peripheral Arterial Occlusive Diseases in Reference to Non Surgical
参考非手术治疗慢性外周动脉闭塞性疾病外周血流动力学的实验研究
- 批准号:
60480292 - 财政年份:1985
- 资助金额:
$ 13.28万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)