Aligned Nanofibrillar Scaffolds Enhance Angiogenesis and Viability in Ischemia
对齐的纳米纤维支架增强缺血中的血管生成和活力
基本信息
- 批准号:9208640
- 负责人:
- 金额:$ 47.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-02-01 至 2021-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlpha CellAnatomyAngiographyAnimal ModelAnimalsApoptosisArterial Occlusive DiseasesArteriesBiocompatible MaterialsBiomimeticsBloodBlood VesselsBlood flowCell SurvivalCellsClinical TrialsCollagenCollagen FibrilCuesCultured CellsDataDevelopmentDisease modelElectrospinningEndothelial CellsEndotheliumExperimental ModelsFibrillar CollagenFluorescenceGangreneGoalsGrowth FactorHindlimbHistologicHumanHydrogelsHypoxiaImageImplantIn VitroInjectableIschemiaKineticsLasersLegLimb structureMechanicsMetabolicMethodsMindModelingNatural regenerationNitric OxidePainPatientsPeripheral arterial diseasePositron-Emission TomographyProcessProductionPropertyRecoveryReporterRoleSecondary toSignal TransductionSpectrum AnalysisStem cellsStructureTestingTissuesVascular blood supplyVascularizationX-Ray Computed Tomographyangiogenesisarmbasebioluminescence imagingblood perfusionclinical efficacyclinical translationclinically translatablecytokineendothelial dysfunctionimplantationimprovedin vivoinduced pluripotent stem celllimb amputationmigrationminimally invasivemouse modelnanopatternnanoscalenovel strategiesparacrinepublic health relevanceresponsescaffoldstem cell therapytreatment groupvascular endothelial dysfunction
项目摘要
DESCRIPTION (provided by applicant): Over 8 million people in the US suffer from peripheral arterial disease (PAD), which is characterized by narrowing of the arteries that supply blood flow to the limbs, leading to tissue ischemia. A central feature of PAD is dysfunction of the vascular endothelial cells (ECs) that control vascular reactivity and angiogenesis. We previously demonstrated that ECs derived from human induced pluripotent stem cells (iPSC-ECs) can improve blood perfusion in animals with induced hindlimb ischemia, an experimental model of PAD. However, poor cell survival limited their angiogenic potential. To address this limitation, we seek to develop aligned nanofibrillar collagen scaffolds that mimic the crimped (wavy) structure of native collagen fibrils. In comparison to injectable scaffolds, which lack organized nano-scale structure and mechanical integrity, our preliminary data suggests that aligned nanofibrillar scaffolds provide structural support for guiding the organization of newly formed vessels, directing cell survival, and stimulating angiogenesis. The global hypothesis is that crimped aligned nanofibrillar scaffolds seeded with iPSC-ECs will enhance cell survival, accelerate vascular network formation, and induce angiogenesis in the ischemic limb in small and large animal PAD models. In this resubmission application, Specific Aim 1 will test the hypothesis that crimped aligned nanofibrillar scaffolds, in contrast to randomly oriented scaffolds, will enhance iPSC-EC survival and angiogenesis in vitro. For up to 14 days, cell viability and angiogenesis (migration, vascular network formation, and cytokine production) will be quantitatively compared between iPSC-ECs that are seeded on aligned or randomly oriented scaffolds under hypoxia (1% O2). To validate these findings in vivo, Specific Aim 2 will compare the temporal process of angiogenesis, arteriogenesis, and cell survival after implantation of the iPSC-EC-seeded aligned nanofibrillar scaffold into the ischemic limb. Over 28 days, cell survival, blood perfusion recovery, and formation of new microvasculature will be quantitatively assessed by bioluminescence imaging, laser Doppler blood spectroscopy, and micro computed tomography imaging, respectively, between cells seeded on aligned or randomly oriented scaffolds. Towards clinical translation, Specific Aim 3 will be an exploratory study in which iPSC-ECs seeded on aligned or randomly oriented scaffolds will be implanted into an ovine limb ischemia model. Cell survival will be tracked by. The temporal process of microvessel formation and blood perfusion recovery will be assessed by computed tomography and fluorescence assisted angiography, respectively. Anatomical tunneling of the scaffolds to the ischemic limb will also be examined as a clinically translatable minimally invasive delivery approach. Together, the results of these studies will lead to the development of biomimetic nanofibrillar scaffolds to improve the clinical efficacy of stem cell therapy to PAD patients. We have generated the preliminary scientific components and assembled the expertise to hopefully successfully achieve these goals.
描述(由申请人提供):在美国,超过800万人患有外周动脉疾病(PAD),其特征在于向肢体供应血流的动脉变窄,导致组织缺血。PAD的中心特征是控制血管反应性和血管生成的血管内皮细胞(EC)的功能障碍。我们以前证明,来自人诱导多能干细胞(iPSC-ECs)的ECs可以改善诱导后肢缺血动物(PAD的实验模型)的血液灌注。然而,较差的细胞存活限制了它们的血管生成潜力。为了解决这一限制,我们寻求开发模拟天然胶原原纤维的卷曲(波浪形)结构的对齐的纳米原纤维胶原支架。与缺乏有组织的纳米尺度结构和机械完整性的可注射支架相比,我们的初步数据表明,对齐的纳米纤维支架为引导新形成的血管的组织、指导细胞存活和刺激血管生成提供了结构支持。总体假设是,在小型和大型动物PAD模型中,接种有iPSC-EC的卷曲对齐的纳米纤维支架将增强细胞存活,加速血管网络形成,并诱导缺血肢体中的血管生成。 在这次重新提交申请中,具体目标1将测试卷曲排列的纳米纤维支架与随机取向的支架相比将增强iPSC-EC存活和体外血管生成的假设。在长达14天的时间内,将在缺氧(1% O2)下接种在对齐或随机定向支架上的iPSC-EC之间定量比较细胞活力和血管生成(迁移、血管网络形成和细胞因子产生)。为了在体内验证这些发现,Specific Aim 2将比较在将iPSC-EC接种的对齐纳米原纤支架植入缺血肢体后血管生成、动脉生成和细胞存活的时间过程。在28天内,将分别通过生物发光成像、激光多普勒血液光谱和微型计算机断层扫描成像来定量评估接种在对齐或随机定向支架上的细胞之间的细胞存活、血液灌注恢复和新微血管的形成。对于临床转化,Specific Aim 3将是一项探索性研究,其中将在对齐或随机定向的支架上接种的iPSC-EC植入绵羊肢体缺血模型中。细胞存活率将通过。将分别通过计算机断层扫描和荧光辅助血管造影术评估微血管形成和血液灌注恢复的时间过程。支架到缺血肢体的解剖隧道也将作为临床上可转化的微创递送方法进行检查。总之,这些研究的结果将导致仿生纳米纤维支架的开发,以提高干细胞治疗PAD患者的临床疗效。我们已经产生了初步的科学组成部分,并汇集了专业知识,希望能成功实现这些目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ngan F. Huang其他文献
Combinatorial extracellular matrix tissue chips for optimizing mesenchymal stromal cell microenvironment and manufacturing
用于优化间充质基质细胞微环境及制造的组合型细胞外基质组织芯片
- DOI:
10.1038/s41536-025-00408-z - 发表时间:
2025-04-22 - 期刊:
- 影响因子:6.500
- 作者:
Ishita Jain;Alex H. P. Chan;Guang Yang;Hao He;Johnny Lam;Kyung Sung;Ngan F. Huang - 通讯作者:
Ngan F. Huang
A mouse model of volumetric muscle loss and therapeutic scaffold implantation
容积性肌肉缺失和治疗性支架植入的小鼠模型
- DOI:
10.1038/s41596-024-01059-y - 发表时间:
2024-10-18 - 期刊:
- 影响因子:16.000
- 作者:
Caroline Hu;Gladys Chiang;Alex H.-P. Chan;Cynthia Alcazar;Karina H. Nakayama;Marco Quarta;Thomas A. Rando;Ngan F. Huang - 通讯作者:
Ngan F. Huang
Overcoming big bottlenecks in vascular regeneration
克服血管再生中的重大瓶颈
- DOI:
10.1038/s42003-024-06567-x - 发表时间:
2024-07-18 - 期刊:
- 影响因子:5.100
- 作者:
Dalia A. Fantini;Guang Yang;Astha Khanna;Divya Subramanian;Julie A. Phillippi;Ngan F. Huang - 通讯作者:
Ngan F. Huang
Bioinstructive scaffolds enhance stem cell engraftment for functional tissue regeneration
生物诱导支架可增强干细胞植入以实现功能性组织再生
- DOI:
10.1038/s41563-025-02212-y - 发表时间:
2025-04-17 - 期刊:
- 影响因子:38.500
- 作者:
Di Wu;Ioannis Eugenis;Caroline Hu;Soochi Kim;Abhijnya Kanugovi;Shouzheng Yue;Joshua R. Wheeler;Iman Fathali;Sonali Feeley;Joseph B. Shrager;Ngan F. Huang;Thomas A. Rando - 通讯作者:
Thomas A. Rando
Ngan F. Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ngan F. Huang', 18)}}的其他基金
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10703808 - 财政年份:2023
- 资助金额:
$ 47.18万 - 项目类别:
Novel Highly Regenerative and Scalable Progenitor Cell Exosomes for Treating Peripheral Artery Disease
用于治疗外周动脉疾病的新型高度再生和可扩展的祖细胞外泌体
- 批准号:
10759902 - 财政年份:2023
- 资助金额:
$ 47.18万 - 项目类别:
Engineering Vascularized Skeletal Muscle for Treatment of Volumetric Muscle Loss
工程血管化骨骼肌用于治疗体积性肌肉损失
- 批准号:
10158427 - 财政年份:2019
- 资助金额:
$ 47.18万 - 项目类别:
Engineering Vascularized Skeletal Muscle for Treatment of Volumetric Muscle Loss
工程血管化骨骼肌用于治疗体积性肌肉损失
- 批准号:
10386908 - 财政年份:2019
- 资助金额:
$ 47.18万 - 项目类别:
Muscle stem cell therapy for volumetric muscle loss
肌肉干细胞疗法治疗体积性肌肉损失
- 批准号:
10284923 - 财政年份:2014
- 资助金额:
$ 47.18万 - 项目类别:
Muscle stem cell therapy for volumetric muscle loss
肌肉干细胞疗法治疗体积性肌肉损失
- 批准号:
10631859 - 财政年份:2014
- 资助金额:
$ 47.18万 - 项目类别:
Matrix-mediated endothelial differentiation of induced pluripotent stem cells
基质介导的诱导多能干细胞的内皮分化
- 批准号:
8133483 - 财政年份:2010
- 资助金额:
$ 47.18万 - 项目类别:
Matrix-mediated endothelial differentiation of induced pluripotent stem cells
基质介导的诱导多能干细胞的内皮分化
- 批准号:
8626434 - 财政年份:2010
- 资助金额:
$ 47.18万 - 项目类别:
Matrix-mediated endothelial differentiation of induced pluripotent stem cells
基质介导的诱导多能干细胞的内皮分化
- 批准号:
7989804 - 财政年份:2010
- 资助金额:
$ 47.18万 - 项目类别:
Matrix-mediated endothelial differentiation of induced pluripotent stem cells
基质介导的诱导多能干细胞的内皮分化
- 批准号:
8594408 - 财政年份:2010
- 资助金额:
$ 47.18万 - 项目类别:
相似海外基金
The Role of Arginine Transport on Pancreatic Alpha Cell Proliferation and Function
精氨酸转运对胰腺α细胞增殖和功能的作用
- 批准号:
10678248 - 财政年份:2023
- 资助金额:
$ 47.18万 - 项目类别:
Alpha cell-derived Extracellular Vesicles and Maternal Insulin Production
α细胞来源的细胞外囊泡和母体胰岛素的产生
- 批准号:
10681939 - 财政年份:2023
- 资助金额:
$ 47.18万 - 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
- 批准号:
10427574 - 财政年份:2022
- 资助金额:
$ 47.18万 - 项目类别:
Arginine regulation of alpha cell proliferation and function
精氨酸调节α细胞增殖和功能
- 批准号:
10609909 - 财政年份:2022
- 资助金额:
$ 47.18万 - 项目类别:
Regulation of alpha-cell glucagon secretion by mitochondrial anaplerosis-cataplerosis
线粒体回补-回补对α细胞胰高血糖素分泌的调节
- 批准号:
10607392 - 财政年份:2022
- 资助金额:
$ 47.18万 - 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
- 批准号:
10675646 - 财政年份:2022
- 资助金额:
$ 47.18万 - 项目类别:
Elucidating alpha cell defects in human type 1 diabetes using precision cut pancreas slice-on-a-chip coupled with high spatio-temporal microscopy
使用精密切割的胰腺切片结合高时空显微镜阐明人类 1 型糖尿病的 α 细胞缺陷
- 批准号:
457552 - 财政年份:2021
- 资助金额:
$ 47.18万 - 项目类别:
Studentship Programs
Defining alpha-cell proglucagon processing for type 2 diabetes treatment
定义 2 型糖尿病治疗的 α 细胞胰高血糖素原加工过程
- 批准号:
10331361 - 财政年份:2020
- 资助金额:
$ 47.18万 - 项目类别:
In vivo systems to discover mechanisms regulating human islet alpha cell function
体内系统发现调节人类胰岛α细胞功能的机制
- 批准号:
10623306 - 财政年份:2020
- 资助金额:
$ 47.18万 - 项目类别:
Defining alpha-cell PC1/3 expression regulation for type 2 diabetes
定义 2 型糖尿病的 α 细胞 PC1/3 表达调控
- 批准号:
10376866 - 财政年份:2020
- 资助金额:
$ 47.18万 - 项目类别: