Muscle stem cell therapy for volumetric muscle loss

肌肉干细胞疗法治疗体积性肌肉损失

基本信息

项目摘要

Major trauma can cause volumetric muscle loss (VML) resulting in life-long disability. Although skeletal muscle is capable of remarkable regenerative potential, when injury is massive and destroys the underlying architecture, regeneration is aborted and is characterized instead by scar tissue formation. The standard of care in such injuries is wound closure, leaving little hope for functional recovery. The promise of regenerative medicine is the full regeneration of damaged tissues, either by promoting repair from endogenous stem cells or by the transplantation of cells to enhance regeneration. Perhaps the best example of this is skin grafting in the setting of massive tissue loss in burn victims. The fact that grafted skin contains endogenous stem cells assures that the graft will not only restore function acutely but also chronically as the stem cells function to replenish skin cells that are lost during the normal turnover of the tissue. Likewise, the long-term goal of regenerative medicine is to be able to restore damaged tissue and maintain that tissue for the full lifetime of the individual. Major advances have been made in the culture and transplantation of muscle stem cells (MuSCs, also known as “satellite cells”) in recent decades, primarily in rodent models of muscle injury and degenerative disease. It has been known for over 40 years that transplanted myoblasts, the more differentiated progeny of MuSCs, can contribute to new muscle formation in the host. However, it has long been recognized that those cells have limited regenerative capacity and fail to form new stem cells. In our ongoing studies, supported by extensive Preliminary Data, we have been able to generate “bioconstructs” that consist of decellularized muscle scaffolds into which we have engrafted MuSCs in a hydrogel. When this whole bioconstruct is transplanted into a VML lesion in a mouse hindlimb muscle, we are currently able to achieve limited structural and functional restoration. The major focus of the studies of this proposal is the development of this technology so as to optimize MuSC treatment of VML lesions and to design a scalable therapy that could be translated to humans. Toward this goal, we have outlined three Specific Aims, each based on extensive Preliminary Data: 1) To enhance MuSC therapy by generative bioconstructs that contain other cellular components of the MuSC niche so as to improve the engraftment and de novo muscle fiber formation by the MuSCs; 2) To optimize the use of physical activity in the form of voluntary running or forced treadmill running to enhance the efficacy of MuSC treatment of VML lesions; and 3) To assess our ability to scale up our model using at 10-fold increase in VML size and treatment with two separate approaches – a direct scaling of our bioconstruct and the use of “modular” bioconstructs. The overall goal of this proposal is to develop a scalable technology using MuSC bioconstruct transplantation for the treatment of VML. This will have direct and immediate relevance to Veterans who are suffering from skeletal muscle injuries, injuries that have limited their functional capacity and that, to date, have had no hope of further recovery. Our goal is to develop a novel therapeutic approach to muscle tissue repair based upon a deep understanding of the basic stem cell biology, a state-of-the-art application of bioengineering approaches to these clinical challenges, and a firm commitment to the clinical/translational mission to improve the health and quality of life of Veterans whose function and further rehabilitation is limited by the lack of effective therapeutic options.
严重创伤可导致体积性肌肉损失(VML),导致终身残疾。尽管骨骼

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ngan F. Huang其他文献

Combinatorial extracellular matrix tissue chips for optimizing mesenchymal stromal cell microenvironment and manufacturing
用于优化间充质基质细胞微环境及制造的组合型细胞外基质组织芯片
  • DOI:
    10.1038/s41536-025-00408-z
  • 发表时间:
    2025-04-22
  • 期刊:
  • 影响因子:
    6.500
  • 作者:
    Ishita Jain;Alex H. P. Chan;Guang Yang;Hao He;Johnny Lam;Kyung Sung;Ngan F. Huang
  • 通讯作者:
    Ngan F. Huang
A mouse model of volumetric muscle loss and therapeutic scaffold implantation
容积性肌肉缺失和治疗性支架植入的小鼠模型
  • DOI:
    10.1038/s41596-024-01059-y
  • 发表时间:
    2024-10-18
  • 期刊:
  • 影响因子:
    16.000
  • 作者:
    Caroline Hu;Gladys Chiang;Alex H.-P. Chan;Cynthia Alcazar;Karina H. Nakayama;Marco Quarta;Thomas A. Rando;Ngan F. Huang
  • 通讯作者:
    Ngan F. Huang
Overcoming big bottlenecks in vascular regeneration
克服血管再生中的重大瓶颈
  • DOI:
    10.1038/s42003-024-06567-x
  • 发表时间:
    2024-07-18
  • 期刊:
  • 影响因子:
    5.100
  • 作者:
    Dalia A. Fantini;Guang Yang;Astha Khanna;Divya Subramanian;Julie A. Phillippi;Ngan F. Huang
  • 通讯作者:
    Ngan F. Huang
Bioinstructive scaffolds enhance stem cell engraftment for functional tissue regeneration
生物诱导支架可增强干细胞植入以实现功能性组织再生
  • DOI:
    10.1038/s41563-025-02212-y
  • 发表时间:
    2025-04-17
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Di Wu;Ioannis Eugenis;Caroline Hu;Soochi Kim;Abhijnya Kanugovi;Shouzheng Yue;Joshua R. Wheeler;Iman Fathali;Sonali Feeley;Joseph B. Shrager;Ngan F. Huang;Thomas A. Rando
  • 通讯作者:
    Thomas A. Rando

Ngan F. Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ngan F. Huang', 18)}}的其他基金

BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
  • 批准号:
    10703808
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Novel Highly Regenerative and Scalable Progenitor Cell Exosomes for Treating Peripheral Artery Disease
用于治疗外周动脉疾病的新型高度再生和可扩展的祖细胞外泌体
  • 批准号:
    10759902
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Engineering Vascularized Skeletal Muscle for Treatment of Volumetric Muscle Loss
工程血管化骨骼肌用于治疗体积性肌肉损失
  • 批准号:
    10158427
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Engineering Vascularized Skeletal Muscle for Treatment of Volumetric Muscle Loss
工程血管化骨骼肌用于治疗体积性肌肉损失
  • 批准号:
    10386908
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Aligned Nanofibrillar Scaffolds Enhance Angiogenesis and Viability in Ischemia
对齐的纳米纤维支架增强缺血中的血管生成和活力
  • 批准号:
    9208640
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Muscle stem cell therapy for volumetric muscle loss
肌肉干细胞疗法治疗体积性肌肉损失
  • 批准号:
    10631859
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
Matrix-mediated endothelial differentiation of induced pluripotent stem cells
基质介导的诱导多能干细胞的内皮分化
  • 批准号:
    8133483
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Matrix-mediated endothelial differentiation of induced pluripotent stem cells
基质介导的诱导多能干细胞的内皮分化
  • 批准号:
    8626434
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Matrix-mediated endothelial differentiation of induced pluripotent stem cells
基质介导的诱导多能干细胞的内皮分化
  • 批准号:
    7989804
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Matrix-mediated endothelial differentiation of induced pluripotent stem cells
基质介导的诱导多能干细胞的内皮分化
  • 批准号:
    8594408
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了