Engineering Vascularized Skeletal Muscle for Treatment of Volumetric Muscle Loss
工程血管化骨骼肌用于治疗体积性肌肉损失
基本信息
- 批准号:10158427
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:Biomedical EngineeringBloodBlood VesselsCell DensityCell LineCell SurvivalCell TransplantationCicatrixClinicalCuesDNA Sequence AlterationDataDebridementDiseaseEconomic BurdenEndothelial CellsEndotheliumEngineeringExplosionExtracellular MatrixGene DeliveryGenerationsGoalsGrowthGrowth FactorGunshot woundHealthHistologicImpairmentIn VitroIncidenceInjuryLasersLengthMeasurementMeasuresMediatingMessenger RNAMorbidity - disease rateMusMuscleMuscle FibersMuscle functionMuscular AtrophyMyoblastsNatural regenerationOperative Surgical ProceduresOutcomeOxygenPatientsPatternPerfusionPhysiologicalPlayProteomicsRecoveryRoleSiteSkeletal MuscleSpectrum AnalysisStructureSupplementationSurgical FlapsSystemTestingTherapeuticTissue EngineeringTissuesTransfectionTransplantationTraumatic injuryTreatment EfficacyVascular Endothelial CellVehicle crashVeteransbioluminescence imagingblood perfusioncombatconfocal imagingcytokinedesigndisabilityexperiencehealingimprovedin vivoinjuredmechanical propertiesmilitary veteranmouse modelmuscle engineeringmuscle physiologymuscle regenerationmuscle strengthmuscular structurenanofibrillarnanopatternnanoscalenovel strategiesrepairedscaffoldtibialis anterior muscletransplantation therapyvolumetric muscle loss
项目摘要
Volumetric muscle loss (VML) is characterized by the loss of a significant portion
of skeletal muscle, leading to permanent damage to muscle structure and function.
VML results from major traumatic injury, and it is becoming increasingly more frequent
in military Veterans as a result of roadside explosions, gunshot wounds, and motor
vehicle crashes. VML contributes to long-term disability and $400 billion in economic
burden in the US annually. Traumatic injuries leading to VML are associated with
impaired endogenous muscle regeneration and revascularization capacity. Current
surgical interventions such as muscle flap grafting or scar tissue debridement are
associated with significant donor site morbidity and functional deficiency. Experimental
approaches using decellularized extracellular matrix scaffolds show limited benefit in
muscle recovery. Accordingly, a tissue engineering system that can restore normal
skeletal muscle structure and function remains lacking for treatment of VML. Since
skeletal muscle is composed generally of a bundle of parallel-aligned myofibers
interspersed with blood vessels that provide blood and oxygen to the myofibers, the
long-term goal of this proposal is to engineer vascularized skeletal muscle tissue
constructs that mimic the native muscle and vessel structure, in order to restore muscle
function after VML.
The purpose of this study is to bioengineer skeletal muscle tissue composed of
skeletal muscle precursor cells and vascular endothelial cells in a parallel-aligned
nanofibrillar scaffold that augments cell survival, myofiber formation, and vascular
perfusion recovery in a murine model of VML. Owing to the importance of vascular
perfusion recovery, the scaffolds will also be engineered to release angiogenic growth
factors in the form of modified mRNA (mmRNA), which obviates genomic alterations.
The proposed objectives are designed to advance the understanding of how
intercellular interactions with parallel-aligned nanofibrillar scaffolds, along with transient
delivery of therapeutic mmRNA, can promote muscle and vascular regeneration.
Accordingly, the Specific Aims are: (1) To engineer endothelialized aligned
skeletal muscle composed of muscle precursor cells and endothelial cells in an aligned
nanofibrillar scaffold that augments cell survival, myotube formation, and contractile
function in vitro; (2) To enhance the angiogenic capacity of endothelialized and parallel-
aligned engineered skeletal muscle using scaffold-mediated mmRNA delivery; and (3)
To quantify the therapeutic efficacy of endothelialized and aligned engineered skeletal
muscle with transient therapeutic mmRNA delivery in a murine model of VML. The
proposed studies are highly significant because they seek to improve the therapeutic
benefit of cell transplantation for treatment of VML, shifting away from the
transplantation of acellular scaffolds to pre-formed endothelialized muscle tissue
constructs with transient gene delivery for improved clinical outcomes in Veterans and
other patients with VML.
容积性肌肉损失(VML)的特征是损失了相当大的一部分,
骨骼肌损伤,导致肌肉结构和功能的永久性损伤。
VML由严重的创伤性损伤引起,并且变得越来越频繁
在退伍军人由于路边爆炸,枪伤,和汽车
车祸。VML有助于长期残疾和4000亿美元的经济增长
美国每年的负担。导致VML的创伤性损伤与以下因素有关:
内源性肌肉再生和血管再生能力受损。电流
外科手术例如肌瓣移植或疤痕组织清创术,
与显著的供体部位发病率和功能缺陷相关。实验
使用脱细胞细胞的细胞外基质支架的方法显示出有限的益处,
肌肉恢复因此,可以恢复正常的组织工程系统,
骨骼肌结构和功能对于VML的治疗仍然缺乏。以来
骨骼肌通常由一束平行排列的肌纤维组成
散布着为肌纤维提供血液和氧气的血管,
这项提案的长期目标是工程化血管化骨骼肌组织
模拟天然肌肉和血管结构的结构,以恢复肌肉
VML之后的函数。
这项研究的目的是生物工程骨骼肌组织组成的
骨骼肌前体细胞和血管内皮细胞在平行排列的
增强细胞存活、肌纤维形成和血管生成的纳米原纤维支架
VML小鼠模型中的灌注恢复。由于血管的重要性
灌注恢复,支架也将被工程化以释放血管生成生长,
修饰的mRNA(mmRNA)形式的因子,其避免了基因组改变。
提出的目标旨在促进理解如何
与平行排列的纳米纤维支架的细胞间相互作用,沿着与瞬时
递送治疗性mmRNA可以促进肌肉和血管再生。
因此,具体目的是:(1)工程化内皮化排列
骨骼肌由肌肉前体细胞和内皮细胞组成,
增强细胞存活、肌管形成和收缩的纳米原纤维支架
体外功能;(2)增强内皮化和平行-
使用支架介导的mmRNA递送对齐的工程化骨骼肌;和(3)
为了量化内皮化和对齐的工程化骨骼的治疗效果,
在VML的鼠模型中用瞬时治疗性mmRNA递送肌肉。的
拟议的研究是非常重要的,因为他们寻求改善治疗,
细胞移植治疗VML的好处,从
脱细胞支架向预形成的内皮化肌肉组织的移植
用于改善退伍军人临床结果的瞬时基因递送构建体,
其他VML患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ngan F. Huang其他文献
Combinatorial extracellular matrix tissue chips for optimizing mesenchymal stromal cell microenvironment and manufacturing
用于优化间充质基质细胞微环境及制造的组合型细胞外基质组织芯片
- DOI:
10.1038/s41536-025-00408-z - 发表时间:
2025-04-22 - 期刊:
- 影响因子:6.500
- 作者:
Ishita Jain;Alex H. P. Chan;Guang Yang;Hao He;Johnny Lam;Kyung Sung;Ngan F. Huang - 通讯作者:
Ngan F. Huang
A mouse model of volumetric muscle loss and therapeutic scaffold implantation
容积性肌肉缺失和治疗性支架植入的小鼠模型
- DOI:
10.1038/s41596-024-01059-y - 发表时间:
2024-10-18 - 期刊:
- 影响因子:16.000
- 作者:
Caroline Hu;Gladys Chiang;Alex H.-P. Chan;Cynthia Alcazar;Karina H. Nakayama;Marco Quarta;Thomas A. Rando;Ngan F. Huang - 通讯作者:
Ngan F. Huang
Overcoming big bottlenecks in vascular regeneration
克服血管再生中的重大瓶颈
- DOI:
10.1038/s42003-024-06567-x - 发表时间:
2024-07-18 - 期刊:
- 影响因子:5.100
- 作者:
Dalia A. Fantini;Guang Yang;Astha Khanna;Divya Subramanian;Julie A. Phillippi;Ngan F. Huang - 通讯作者:
Ngan F. Huang
Bioinstructive scaffolds enhance stem cell engraftment for functional tissue regeneration
生物诱导支架可增强干细胞植入以实现功能性组织再生
- DOI:
10.1038/s41563-025-02212-y - 发表时间:
2025-04-17 - 期刊:
- 影响因子:38.500
- 作者:
Di Wu;Ioannis Eugenis;Caroline Hu;Soochi Kim;Abhijnya Kanugovi;Shouzheng Yue;Joshua R. Wheeler;Iman Fathali;Sonali Feeley;Joseph B. Shrager;Ngan F. Huang;Thomas A. Rando - 通讯作者:
Thomas A. Rando
Ngan F. Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ngan F. Huang', 18)}}的其他基金
Novel Highly Regenerative and Scalable Progenitor Cell Exosomes for Treating Peripheral Artery Disease
用于治疗外周动脉疾病的新型高度再生和可扩展的祖细胞外泌体
- 批准号:
10759902 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Engineering Vascularized Skeletal Muscle for Treatment of Volumetric Muscle Loss
工程血管化骨骼肌用于治疗体积性肌肉损失
- 批准号:
10386908 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Aligned Nanofibrillar Scaffolds Enhance Angiogenesis and Viability in Ischemia
对齐的纳米纤维支架增强缺血中的血管生成和活力
- 批准号:
9208640 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Muscle stem cell therapy for volumetric muscle loss
肌肉干细胞疗法治疗体积性肌肉损失
- 批准号:
10284923 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Muscle stem cell therapy for volumetric muscle loss
肌肉干细胞疗法治疗体积性肌肉损失
- 批准号:
10631859 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Matrix-mediated endothelial differentiation of induced pluripotent stem cells
基质介导的诱导多能干细胞的内皮分化
- 批准号:
8133483 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Matrix-mediated endothelial differentiation of induced pluripotent stem cells
基质介导的诱导多能干细胞的内皮分化
- 批准号:
8626434 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Matrix-mediated endothelial differentiation of induced pluripotent stem cells
基质介导的诱导多能干细胞的内皮分化
- 批准号:
7989804 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Matrix-mediated endothelial differentiation of induced pluripotent stem cells
基质介导的诱导多能干细胞的内皮分化
- 批准号:
8594408 - 财政年份:2010
- 资助金额:
-- - 项目类别:
相似海外基金
A methodology to connect functionalized gonadal constructs to a chick embryo through mechanically induced blood vessels from an egg
一种通过鸡蛋机械诱导血管将功能化性腺结构连接到鸡胚胎的方法
- 批准号:
24K15741 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of nextgeneration cellular artificial blood vessels for coronary artery bypass surgery using bio-3D printer
使用生物 3D 打印机开发用于冠状动脉搭桥手术的下一代细胞人造血管
- 批准号:
23H02991 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
ealization of navigation surgery by automatic recognition of stomach and surrounding blood vessels using artificial intelligence
利用人工智能自动识别胃及周围血管,实现导航手术
- 批准号:
23K07176 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Realtime observation and optical control of living microbial probes in blood vessels
血管内活微生物探针的实时观察和光学控制
- 批准号:
23H00551 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Creation of a technique for visualization of stress concentration in blood and blood vessels by combined measurement of photoelasticity and ultrasonic Doppler velocimetry
通过光弹性和超声多普勒测速的组合测量,创建了一种可视化血管中应力集中的技术
- 批准号:
23H01343 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Shear stress-activated synthetic cells for targeted drug release in stenotic blood vessels
剪切应力激活合成细胞用于狭窄血管中的靶向药物释放
- 批准号:
10749217 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Creation of 3D tissue culture system integrated with blood vessels and autonomic nerves
打造血管与植物神经融合的3D组织培养系统
- 批准号:
23H01827 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Biological function of osteoporotic drugs on bone-specific blood vessels and perivascular cells
骨质疏松药物对骨特异性血管和血管周围细胞的生物学功能
- 批准号:
22K21006 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up