Matrix-mediated endothelial differentiation of induced pluripotent stem cells
基质介导的诱导多能干细胞的内皮分化
基本信息
- 批准号:8626434
- 负责人:
- 金额:$ 24.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelArterial Occlusive DiseasesBiocompatible MaterialsBiologicalBiological ProcessBiologyBiomedical EngineeringBiometryBlood VesselsBlood capillariesCardiovascular systemCell Differentiation processCell LineageCell MaintenanceCell SurvivalCell TherapyCell physiologyCellsCellular biologyClinicalCuesCytoskeletonDevelopmentDiseaseEmbryonic DevelopmentEndothelial CellsEndotheliumExtracellular MatrixFoundationsFunctional disorderGoalsHindlimbHistologicHumanHypoxiaIn VitroInjuryIntegrinsIschemiaIsolated limb perfusionKnowledgeLasersLeadMaintenanceMediatingMethodsModelingMolecularMusNatural regenerationPeripheral arterial diseasePhenotypePluripotent Stem CellsPostdoctoral FellowProcessPublic HealthRegulationResearchResearch PersonnelRoleSecondary toSerumSignal PathwaySignal TransductionSiteSomatic CellSourceSpectrum AnalysisStagingStem Cell DevelopmentStem cellsSupporting CellTechniquesTeratomaTherapeuticTimeTissue EngineeringTissuesTrainingUniversitiesVascular DiseasesVascular Endothelial CellVascular Endotheliumabstractingangiogenesisbasebioluminescence imagingblood perfusioncapillarycareercell behaviordensityfunctional improvementimprovedinduced pluripotent stem cellinsightinterestmedical schoolsnutritionprogenitorreceptorrepairedresponsescaffoldself-renewalstem cell differentiationstem cell therapysuccess
项目摘要
Project Summary/Abstract
Over 8 million people in the US suffer from peripheral arterial disease (PAD). A feature of PAD is
dysfunction or damage to the vascular endothelium, a layer of endothelial cells (ECs) that exerts control over
vascular reactivity, remodeling and angiogenesis. Cell-based approaches to restore or regenerate the
endothelium so as to enhance the angiogenic response to ischemia hold promise for the treatment of PAD. A
candidate source of ECs is induced pluripotent stem cells (iPSCs), which are derived from reprogrammed
somatic cells. The iPSCs maintain unlimited self renewal and the ability to differentiate into cardiovascular
lineages, including ECs. In order to utilize iPSCs therapeutically, the cells must first be differentiated into the
lineage of interest and then delivered efficiently to the site of ischemic disease. Stem cell phenotype and
function are influenced by microenvironmental cues including the extracellular matrix (ECM), a biological
scaffolding material that provides structural support and modulates cellular function and phenotype. ECM
regulation of cell behavior is mediated by integrin transmembrane receptors that connect the ECM to the
intracellular cytoskeleton and activate downstream signaling pathways. ECMs have been shown to enhance
the yields of EC lineages of pluripotent stem cells, but whether these ECMs are optimal for EC differentiation is
unknown because there has been no systematic study to assess the role of matrix-mediated differentiation.
The goal of this project is to define the role of ECMs in the differentiation of iPSCs into ECs,
maintenance of EC phenotype, and therapeutic enhancement of angiogenesis in animal models of PAD. This
project will utilize a high-throughput ECM microarray platform to optimize the efficiency of matrix-mediated
iPSC differentiation into ECs. The mechanistic role of ECM-integrin interactions during EC differentiation and
maintenance will also be examined. Finally, iPSC-derived ECs and ECMs will be assessed in animal models
of PAD for vascular regeneration. By gaining fundamental insights into mechanisms of ECM-mediated
differentiation and angiogenic function, the applicant intends to provide a stronger foundation of knowledge
and improved methods for the clinical development and application of iPSC-derived ECs for vascular repair.
The applicant seeks to establish a tenure-track academic career in advancing the treatment of vascular
diseases using bioengineering and molecular cell biology techniques. The applicant is a postdoctoral fellow in
the Stanford University School of Medicine, where she is being trained in stem cell and molecular cellular
techniques in the research group of Dr. John Cooke, a well-established investigator in the field of endothelial
biology and PAD therapies. Additional guidance in her training and transition to independence will be provided
by renowned experts in the fields of stem cell development, matrix biology, tissue engineering, biomaterials,
and biostatistics.
项目摘要/摘要
在美国,超过800万人患有外周动脉疾病(PAD)。PAD的一个特点是
血管内皮细胞功能障碍或损伤,血管内皮细胞(ECs)对
血管反应性、重塑和血管生成。基于细胞的方法来恢复或重新生成
血管内皮细胞从而增强对缺血的血管生成反应有望成为PAD的治疗手段。一个
内皮细胞的候选来源是诱导多能干细胞(IPSCs),它来自于重新编程的来源
体细胞。IPSCs保持无限的自我更新和分化为心血管疾病的能力
血统,包括ECs。为了将IPSCs用于治疗,必须首先将细胞分化为
感兴趣的血统,然后有效地输送到缺血性疾病的部位。干细胞表型和
功能受到微环境信号的影响,包括细胞外基质(ECM),一种生物
提供结构支持并调节细胞功能和表型的支架材料。ECM
细胞行为的调节是由连接细胞外基质和细胞外基质的整合素跨膜受体介导的
细胞内细胞骨架,并激活下游信号通路。ECM已被证明可以增强
多能干细胞的EC谱系的产量,但这些ECM是否对EC分化是最佳的
未知,因为目前还没有系统的研究来评估基质介导的分化的作用。
本项目的目标是确定ECM在IPSC分化为ECS过程中的作用,
在PAD动物模型中维持EC表型,并在治疗上增强血管生成。这
项目将利用高通量ECM微阵列平台来优化基质中介的效率
IPSC向内皮细胞分化。细胞外基质-整合素相互作用在EC分化和分化中的机制作用
还将检查维护情况。最后,IPSC来源的ECs和ECM将在动物模型中进行评估
用于血管再生的垫片。通过对ECM介导的机制有基本的了解
分化与血管生成功能,申请者拟提供较强的知识基础
并改进了IPSC来源的内皮细胞用于血管修复的临床开发和应用方法。
申请者寻求在促进血管治疗方面建立终身教职的学术生涯。
使用生物工程和分子细胞生物学技术的疾病。申请人是一名博士后研究员。
斯坦福大学医学院,她正在那里接受干细胞和分子细胞方面的培训
约翰·库克博士的研究小组中的技术,他是内皮领域的知名研究员
生物学和PAD疗法。将为她的训练和向独立的过渡提供额外的指导
由干细胞开发、基质生物学、组织工程、生物材料、
和生物统计学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ngan F. Huang其他文献
Combinatorial extracellular matrix tissue chips for optimizing mesenchymal stromal cell microenvironment and manufacturing
用于优化间充质基质细胞微环境及制造的组合型细胞外基质组织芯片
- DOI:
10.1038/s41536-025-00408-z - 发表时间:
2025-04-22 - 期刊:
- 影响因子:6.500
- 作者:
Ishita Jain;Alex H. P. Chan;Guang Yang;Hao He;Johnny Lam;Kyung Sung;Ngan F. Huang - 通讯作者:
Ngan F. Huang
A mouse model of volumetric muscle loss and therapeutic scaffold implantation
容积性肌肉缺失和治疗性支架植入的小鼠模型
- DOI:
10.1038/s41596-024-01059-y - 发表时间:
2024-10-18 - 期刊:
- 影响因子:16.000
- 作者:
Caroline Hu;Gladys Chiang;Alex H.-P. Chan;Cynthia Alcazar;Karina H. Nakayama;Marco Quarta;Thomas A. Rando;Ngan F. Huang - 通讯作者:
Ngan F. Huang
Overcoming big bottlenecks in vascular regeneration
克服血管再生中的重大瓶颈
- DOI:
10.1038/s42003-024-06567-x - 发表时间:
2024-07-18 - 期刊:
- 影响因子:5.100
- 作者:
Dalia A. Fantini;Guang Yang;Astha Khanna;Divya Subramanian;Julie A. Phillippi;Ngan F. Huang - 通讯作者:
Ngan F. Huang
Bioinstructive scaffolds enhance stem cell engraftment for functional tissue regeneration
生物诱导支架可增强干细胞植入以实现功能性组织再生
- DOI:
10.1038/s41563-025-02212-y - 发表时间:
2025-04-17 - 期刊:
- 影响因子:38.500
- 作者:
Di Wu;Ioannis Eugenis;Caroline Hu;Soochi Kim;Abhijnya Kanugovi;Shouzheng Yue;Joshua R. Wheeler;Iman Fathali;Sonali Feeley;Joseph B. Shrager;Ngan F. Huang;Thomas A. Rando - 通讯作者:
Thomas A. Rando
Ngan F. Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ngan F. Huang', 18)}}的其他基金
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10703808 - 财政年份:2023
- 资助金额:
$ 24.4万 - 项目类别:
Novel Highly Regenerative and Scalable Progenitor Cell Exosomes for Treating Peripheral Artery Disease
用于治疗外周动脉疾病的新型高度再生和可扩展的祖细胞外泌体
- 批准号:
10759902 - 财政年份:2023
- 资助金额:
$ 24.4万 - 项目类别:
Engineering Vascularized Skeletal Muscle for Treatment of Volumetric Muscle Loss
工程血管化骨骼肌用于治疗体积性肌肉损失
- 批准号:
10158427 - 财政年份:2019
- 资助金额:
$ 24.4万 - 项目类别:
Engineering Vascularized Skeletal Muscle for Treatment of Volumetric Muscle Loss
工程血管化骨骼肌用于治疗体积性肌肉损失
- 批准号:
10386908 - 财政年份:2019
- 资助金额:
$ 24.4万 - 项目类别:
Aligned Nanofibrillar Scaffolds Enhance Angiogenesis and Viability in Ischemia
对齐的纳米纤维支架增强缺血中的血管生成和活力
- 批准号:
9208640 - 财政年份:2016
- 资助金额:
$ 24.4万 - 项目类别:
Muscle stem cell therapy for volumetric muscle loss
肌肉干细胞疗法治疗体积性肌肉损失
- 批准号:
10284923 - 财政年份:2014
- 资助金额:
$ 24.4万 - 项目类别:
Muscle stem cell therapy for volumetric muscle loss
肌肉干细胞疗法治疗体积性肌肉损失
- 批准号:
10631859 - 财政年份:2014
- 资助金额:
$ 24.4万 - 项目类别:
Matrix-mediated endothelial differentiation of induced pluripotent stem cells
基质介导的诱导多能干细胞的内皮分化
- 批准号:
8133483 - 财政年份:2010
- 资助金额:
$ 24.4万 - 项目类别:
Matrix-mediated endothelial differentiation of induced pluripotent stem cells
基质介导的诱导多能干细胞的内皮分化
- 批准号:
7989804 - 财政年份:2010
- 资助金额:
$ 24.4万 - 项目类别:
Matrix-mediated endothelial differentiation of induced pluripotent stem cells
基质介导的诱导多能干细胞的内皮分化
- 批准号:
8594408 - 财政年份:2010
- 资助金额:
$ 24.4万 - 项目类别:
相似海外基金
Experimental Study on Peripheral Hemodynamics in Chronic Peripheral Arterial Occlusive Diseases in Reference to Non Surgical
参考非手术治疗慢性外周动脉闭塞性疾病外周血流动力学的实验研究
- 批准号:
60480292 - 财政年份:1985
- 资助金额:
$ 24.4万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)