Mechanisms of Enzymic and Hydride Transfers
酶和氢化物转移的机制
基本信息
- 批准号:7821369
- 负责人:
- 金额:$ 39.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1990
- 资助国家:美国
- 起止时间:1990-01-16 至 2013-04-30
- 项目状态:已结题
- 来源:
- 关键词:AchievementAcidityAcidsActive SitesAffinityBenzaldehydeBindingBiochemical ReactionBiological ModelsCarbonCatalysisCellsChargeChemicalsChemistryCoenzymesComplexComputational TechniqueComputer SimulationCrystallographyDataDihydrofolate ReductaseElectrostaticsEnvironmentEnzymesGlycerolGoalsHydrogenHydrogen BondingIonsKineticsKnowledgeLeadLearningLeftLifeLigand BindingMeasurementMechanicsMedicalMetalsMethodsMicroscopicModelingMotionMuscle RigidityMutagenesisNatureNeutron DiffractionNeutronsNiacinamideNitrogenOxidoreductaseOxygenPeptide HydrolasesPlayPositioning AttributeProtein DynamicsProteinsProtonsReactionResearchResolutionRoentgen RaysRoleSiteSite-Directed MutagenesisSolventsSpeedSteroid IsomerasesStructureSystemTechniquesTemperatureTestingTitrationsWorkX ray diffraction analysisX-Ray CrystallographyX-Ray Diffractionbasechemical reactionchymotrypsincofactordesigndrug discoveryenzyme substratefascinategalactose mutarotasemolecular dynamicsnovelprotein structureprotonationquantumresearch studysimulationsmall moleculestemstructural biologysugarultra high resolutionvibration
项目摘要
DESCRIPTION (provided by applicant): Ever since enzymes were first discovered, the question of how they achieve their remarkable catalytic proficiency has fascinated both chemists and biologists. This project aims to find general answers to this question for a particular class of enzymes: those that catalyze the transfer of a hydrogen ion, either a proton or a hydride, between parts of a substrate and between the enzyme and the substrate. Our focus on hydrogen stems from the fact that proton or hydride transfers occur as a part of nearly every enzymatic reaction, yet efficient transfer from or to an inactivated carbon or oxygen species is very difficult to accomplish non-enzymatically. For over two decades we have probed this question by a combination of protein crystallography, computational approaches, and site-directed mutagenesis. Along the way we have developed a number of techniques of general use in crystallography, structural biology, and drug discovery. Our studies have revealed the following general principles: (1) Enzymatic catalysis of proton transfer depends on perturbed pKa values for the groups involved. Consider a catalytic base. It appears that the basic nature of this group is increased, perhaps either by shielding it from the solvent or by placing an appropriately charged residue near it, although the mechanism of perturbation has not been proven in most cases. Enzymes also activate the substrate (i.e., increase the acidity of the carbon or oxygen acid) in two ways: by polarization, usually by hydrogen bond donation to a substrate oxygen atom, and by electrostatic stabilization of transition states. (2) Enzymatic catalysis of hydride transfer depends on proximity and orientation. Coenzyme strain does not appear to play a major role. Shielding of the substrate and/or cofactor from solvent does not seem to be essential, although it does occur sometimes. Polarization by, e.g., a metal ion can activate a substrate for hydride abstraction and donation, but often there is no obvious activation involved. For this renewal, we wish to focus on a set of questions that we believe have not been answered conclusively by any experiments or calculation. The questions are: (1) How are the catalytic acids and bases perturbed by the protein environment? (2) Do directed fluctuations (promoting vibrations) play a significant role in catalysis? To answer these questions we have selected several enzymes as model systems: four that catalyze proton transfer and three that catalyze both hydride and proton transfers. The specific methods we will employ include ultra-high resolution X-ray crystallography, neutron diffraction, combined QM/MM calculations, site-directed mutagenesis plus kinetic analysis, and a novel method for perturbing protein dynamics by binding ligands to sites remote from the active site. PUBLICE HEALTH RELEVANCE We are trying to understand how the environment of an enzyme makes difficult chemical reactions occur at blinding speed; such reactions are essential for every living cell, yet we don't understand all of the factors that go into producing this extraordinary chemical achievement. We have selected a particular class of reactions for study, and have devised a research plan that makes use of a large number of experimental and computational techniques to dissect what the protein is doing in each case to facilitate the chemistry. If we are successful, the principles we uncover could lead to the design of artificial enzymes for industrial and medical use.
描述(由申请人提供):自从酶首次被发现以来,它们如何实现其卓越的催化能力的问题一直让化学家和生物学家着迷。该项目旨在为特定类别的酶找到该问题的一般答案:那些催化氢离子(质子或氢化物)在底物部分之间以及酶与底物之间转移的酶。我们对氢的关注源于这样一个事实:质子或氢化物转移几乎是每个酶促反应的一部分,但非酶促地很难实现从或向失活碳或氧物种的有效转移。二十多年来,我们通过结合蛋白质晶体学、计算方法和定点诱变来探索这个问题。一路走来,我们开发了许多晶体学、结构生物学和药物发现领域通用的技术。我们的研究揭示了以下一般原则:(1)质子转移的酶催化取决于所涉及基团的扰动 pKa 值。考虑催化碱。尽管在大多数情况下扰动机制尚未得到证实,但似乎可以通过将其与溶剂隔离或在其附近放置适当带电的残基来增强该基团的基本性质。酶还以两种方式激活底物(即增加碳或含氧酸的酸度):通过极化,通常通过向底物氧原子提供氢键,以及通过过渡态的静电稳定。 (2)氢化物转移的酶催化取决于接近度和方向。辅酶菌株似乎没有发挥主要作用。将底物和/或辅因子与溶剂隔离似乎并不重要,尽管有时确实会发生。例如,金属离子的极化可以激活用于氢化物提取和供给的底物,但通常不涉及明显的激活。对于本次更新,我们希望重点关注一系列我们认为尚未通过任何实验或计算得出结论性答案的问题。问题是:(1)催化酸和碱如何受到蛋白质环境的干扰? (2) 定向波动(促进振动)在催化中发挥重要作用吗?为了回答这些问题,我们选择了几种酶作为模型系统:四种催化质子转移,三种同时催化氢化物和质子转移。我们将采用的具体方法包括超高分辨率 X 射线晶体学、中子衍射、组合 QM/MM 计算、定点诱变加动力学分析,以及通过将配体与远离活性位点的位点结合来扰动蛋白质动力学的新方法。 公共健康相关性我们正在试图了解酶的环境如何使困难的化学反应以惊人的速度发生;这些反应对于每个活细胞都至关重要,但我们并不了解产生这一非凡化学成就的所有因素。我们选择了一类特定的反应进行研究,并制定了一项研究计划,利用大量的实验和计算技术来剖析蛋白质在每种情况下的作用,以促进化学反应。如果我们成功了,我们发现的原理可能会导致工业和医疗用途人造酶的设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GREGORY A PETSKO其他文献
GREGORY A PETSKO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GREGORY A PETSKO', 18)}}的其他基金
STRUCTURE BIOLOGY OF ENZYMES AND DNA-BINDING PROTEINS
酶和 DNA 结合蛋白的结构生物学
- 批准号:
7721252 - 财政年份:2008
- 资助金额:
$ 39.04万 - 项目类别:
STRUCTURE BIOLOGY OF ENZYMES AND DNA-BINDING PROTEINS
酶和 DNA 结合蛋白的结构生物学
- 批准号:
7369543 - 财政年份:2005
- 资助金额:
$ 39.04万 - 项目类别:
TELLURIUM AS HEAVY ATOM FOR PROTEIN STRUCTURE DETERMINATION
碲作为重原子用于蛋白质结构测定
- 批准号:
6120845 - 财政年份:1999
- 资助金额:
$ 39.04万 - 项目类别:
CRYSTALLOGRAPHIC STUDIES OF PROTEIN STRUCTURE & FUNCTION
蛋白质结构的晶体学研究
- 批准号:
6123278 - 财政年份:1998
- 资助金额:
$ 39.04万 - 项目类别:
X RAY GENERATOR/AREA DETECTOR FOR STRUCTURAL BIOLOGY
用于结构生物学的 X 射线发生器/区域探测器
- 批准号:
2040270 - 财政年份:1997
- 资助金额:
$ 39.04万 - 项目类别:
CRYSTALLOGRAPHIC STUDIES OF PROTEIN STRUCTURE/FUNCTION
蛋白质结构/功能的晶体学研究
- 批准号:
2174808 - 财政年份:1990
- 资助金额:
$ 39.04万 - 项目类别:
CRYSTALLOGRAPHIC STUDIES OF PROTEIN STRUCTURE/FUNCTION
蛋白质结构/功能的晶体学研究
- 批准号:
2734414 - 财政年份:1990
- 资助金额:
$ 39.04万 - 项目类别:
相似海外基金
Understanding the Impacts of Lewis Acidity and Coordination on Butyl Rubber Polymerization
了解路易斯酸度和配位对丁基橡胶聚合的影响
- 批准号:
575175-2022 - 财政年份:2022
- 资助金额:
$ 39.04万 - 项目类别:
Alliance Grants
New Concepts in Lewis Acidity, Catalysis, and Polymer Science: Functional Main Group Cages
路易斯酸、催化和高分子科学的新概念:功能主族笼
- 批准号:
RGPIN-2018-05574 - 财政年份:2022
- 资助金额:
$ 39.04万 - 项目类别:
Discovery Grants Program - Individual
Constraining the Sulphur Cycling Pathway Causing Delayed Acidity in Mine Wastewater
限制硫循环路径导致矿山废水酸度延迟
- 批准号:
568873-2022 - 财政年份:2022
- 资助金额:
$ 39.04万 - 项目类别:
Postgraduate Scholarships - Doctoral
Quantifying Lewis acidity for Chemoselective Lewis acid Catalysis
化学选择性路易斯酸催化中路易斯酸度的定量
- 批准号:
559925-2021 - 财政年份:2022
- 资助金额:
$ 39.04万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Control of Inflammatory Acidity in Mucosal Inflammation
粘膜炎症中炎症酸度的控制
- 批准号:
10512056 - 财政年份:2021
- 资助金额:
$ 39.04万 - 项目类别:
New Concepts in Lewis Acidity, Catalysis, and Polymer Science: Functional Main Group Cages
路易斯酸、催化和高分子科学的新概念:功能主族笼
- 批准号:
RGPIN-2018-05574 - 财政年份:2021
- 资助金额:
$ 39.04万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Permissive acidity as a regulator of plant cell expansion
职业:允许的酸度作为植物细胞扩张的调节剂
- 批准号:
2045795 - 财政年份:2021
- 资助金额:
$ 39.04万 - 项目类别:
Standard Grant
Elucidation of rhizospheric consortium responses to two gradients of climate and soil acidity
阐明根际群落对气候和土壤酸度两个梯度的响应
- 批准号:
21H02232 - 财政年份:2021
- 资助金额:
$ 39.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Control of Inflammatory Acidity in Mucosal Inflammation
粘膜炎症中炎症酸度的控制
- 批准号:
10255086 - 财政年份:2021
- 资助金额:
$ 39.04万 - 项目类别:
Quantifying Lewis acidity for Chemoselective Lewis acid Catalysis
化学选择性路易斯酸催化中路易斯酸度的定量
- 批准号:
559925-2021 - 财政年份:2021
- 资助金额:
$ 39.04万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral














{{item.name}}会员




