PATTERNLAB FOR PROTEOMICS: A TOOL FOR DIFFERENTIAL SHOTGUN PROTEOMICS
蛋白质组学模式实验室:差异鸟枪法蛋白质组学工具
基本信息
- 批准号:7957737
- 负责人:
- 金额:$ 2.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBiological AssayBiologyBirdsClassificationComputer Retrieval of Information on Scientific Projects DatabaseDataData AnalysesDetergentsDevelopmentDigestionEarly DiagnosisEffectivenessExperimental DesignsEyeFundingFungal GenomeGoalsGrantGraphInstitutionMachine LearningMass Spectrum AnalysisMethodsPathologyPlant RootsProteinsProteomicsProtocols documentationReadingRelative (related person)ResearchResearch PersonnelResourcesSamplingSet proteinShotgunsSourceTestingUnited States National Institutes of Healthbasebiological systemshigh throughput analysisprogramsprotein expressionprotein profilingresearch studytheoriestool
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
BACKGROUND: A goal of proteomics is to distinguish between states of a biological system by identifying protein expression differences. Liu et al. demonstrated a method to perform semi-relative protein quantitation in shotgun proteomics data by correlating the number of tandem mass spectra obtained for each protein, or "spectral count", with its abundance in a mixture; however, two issues have remained open: how to normalize spectral counting data and how to efficiently pinpoint differences between profiles. Moreover, Chen et al. recently showed how to increase the number of identified proteins in shotgun proteomics by analyzing samples with different MS-compatible detergents while performing proteolytic digestion. The latter introduced new challenges as seen from the data analysis perspective, since replicate readings are not acquired. RESULTS: To address the open issues above, we present a program termed PatternLab for proteomics. This program implements existing strategies and adds two new methods to pinpoint differences in protein profiles. The first method, ACFold, addresses experiments with less than three replicates from each state or having assays acquired by different protocols as described by Chen et al. ACFold uses a combined criterion based on expression fold changes, the AC test, and the false-discovery rate, and can supply a "bird's-eye view" of differentially expressed proteins. The other method addresses experimental designs having multiple readings from each state and is referred to as nSVM (natural support vector machine) because of its roots in evolutionary computing and in statistical learning theory. Our observations suggest that nSVM's niche comprises projects that select a minimum set of proteins for classification purposes; for example, the development of an early detection kit for a given pathology. We demonstrate the effectiveness of each method on experimental data and confront them with existing strategies. CONCLUSION: PatternLab offers an easy and unified access to a variety of feature selection and normalization strategies, each having its own niche. Additionally, graphing tools are available to aid in the analysis of high throughput experimental data. PatternLab is available at http://pcarvalho.com/patternlab
这个子项目是许多研究子项目中的一个
由NIH/NCRR资助的中心赠款提供的资源。子项目和
研究者(PI)可能从另一个NIH来源获得了主要资金,
因此可以在其他CRISP条目中表示。所列机构为
研究中心,而研究中心不一定是研究者所在的机构。
背景:蛋白质组学的目标是通过识别蛋白质表达差异来区分生物系统的状态。Liu等人展示了一种通过将每种蛋白质获得的串联质谱的数量或"光谱计数"与其在混合物中的丰度相关联来在鸟枪蛋白质组学数据中进行半相对蛋白质定量的方法;然而,两个问题仍然存在:如何标准化光谱计数数据以及如何有效地查明谱之间的差异。此外,Chen等人最近展示了如何通过在进行蛋白水解消化的同时用不同的MS相容性洗涤剂分析样品来增加鸟枪蛋白质组学中鉴定的蛋白质的数量。从数据分析的角度来看,后者带来了新的挑战,因为没有获得重复读数。结果:为了解决上述问题,我们提出了一个名为PatternLab的蛋白质组学程序。该计划实施了现有的策略,并增加了两种新的方法来确定蛋白质谱的差异。第一种方法,ACFold,解决了每个状态少于三次重复的实验,或者具有通过不同方案获得的测定,如Chen等人所述。ACFold使用基于表达倍数变化、AC测试和错误发现率的组合标准,并且可以提供差异表达蛋白质的"鸟瞰图"。另一种方法解决了具有来自每个状态的多个读数的实验设计,并且被称为nSVM(自然支持向量机),因为它起源于进化计算和统计学习理论。我们的观察结果表明,nSVM的利基包括项目,选择一个最小的蛋白质组进行分类的目的,例如,开发一个早期检测试剂盒为给定的病理。我们证明了每种方法对实验数据的有效性,并与现有的策略。结论:PatternLab提供了一个简单而统一的访问各种特征选择和标准化策略,每个都有自己的利基。此外,还提供图形工具来帮助分析高通量实验数据。PatternLab可在www.example.com上获得
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN L YATES其他文献
JOHN L YATES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN L YATES', 18)}}的其他基金
INVESTIGATION OF THE POROUS LAYER OPEN TUBULAR (PLOT) REVERSE PHASE COLUMN
多孔层开管(小区)反相柱的研究
- 批准号:
7957760 - 财政年份:2009
- 资助金额:
$ 2.09万 - 项目类别:
A HUPO TEST SAMPLE STUDY REVEALS COMMON PROBLEMS IN MASS SPECTROMETRY-BASED PROT
HUPO 测试样本研究揭示了基于质谱的 PROT 中的常见问题
- 批准号:
7957726 - 财政年份:2009
- 资助金额:
$ 2.09万 - 项目类别:
IDENTIFYING DIFFERENCES IN PROTEIN EXPRESSION LEVELS BY SPECTRAL COUNTING AND FE
通过光谱计数和 FE 识别蛋白质表达水平的差异
- 批准号:
7957728 - 财政年份:2009
- 资助金额:
$ 2.09万 - 项目类别:
CUSTOM DATA ACQUISITION USING THERMOELECTRON CONTROL OBJECT MODEL (COM) LIBRARY
使用热电子控制对象模型 (COM) 库进行自定义数据采集
- 批准号:
7957761 - 财政年份:2009
- 资助金额:
$ 2.09万 - 项目类别:
LABEL-FREE QUANTIFICATION VIA IMPROVED CHROMATOGRAPHIC ELUTION REPRODUCIBILITY
通过改进的色谱洗脱重现性进行无标记定量
- 批准号:
7957762 - 财政年份:2009
- 资助金额:
$ 2.09万 - 项目类别:
COLANDER: A PROBABILITY-BASED SUPPORT VECTOR MACHINE ALGORITHM FOR AUTOMATIC SCR
COLANDER:一种基于概率的自动 SCR 支持向量机算法
- 批准号:
7957740 - 财政年份:2009
- 资助金额:
$ 2.09万 - 项目类别:
ANALYSIS OF ORGANELLES BY ON-LINE TWO-DIMENSIONAL LIQUID CHROMATOGRAPHY-TANDEM M
在线二维液相色谱-TANDEM M分析细胞器
- 批准号:
7957738 - 财政年份:2009
- 资助金额:
$ 2.09万 - 项目类别:
SEMINARS GIVEN BY JOHN R YATES III
约翰·耶茨三世 (JOHN R YATES III) 举办的研讨会
- 批准号:
7957693 - 财政年份:2009
- 资助金额:
$ 2.09万 - 项目类别:
相似海外基金
Establishment of a new biological assay using Hydra nematocyst deployment
利用水螅刺丝囊部署建立新的生物测定方法
- 批准号:
520728-2017 - 财政年份:2017
- 资助金额:
$ 2.09万 - 项目类别:
University Undergraduate Student Research Awards
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10368760 - 财政年份:2017
- 资助金额:
$ 2.09万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10669539 - 财政年份:2017
- 资助金额:
$ 2.09万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9570142 - 财政年份:2017
- 资助金额:
$ 2.09万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9915803 - 财政年份:2017
- 资助金额:
$ 2.09万 - 项目类别:
COVID-19 Supplemental work: POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER).
COVID-19 补充工作:用于确定组织特异性吸收电离辐射剂量的护理点生物测定(生物剂量计)。
- 批准号:
10259999 - 财政年份:2017
- 资助金额:
$ 2.09万 - 项目类别:
Drug discovery based on a new biological assay system using Yeast knock-out strain collection
基于使用酵母敲除菌株收集的新生物测定系统的药物发现
- 批准号:
21580130 - 财政年份:2009
- 资助金额:
$ 2.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2005
- 资助金额:
$ 2.09万 - 项目类别:
Postdoctoral Fellowships
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2004
- 资助金额:
$ 2.09万 - 项目类别:
Postdoctoral Fellowships