COMPUTER MODELING OF AN ATP-BINDING PROTEIN
ATP 结合蛋白的计算机建模
基本信息
- 批准号:7955507
- 负责人:
- 金额:$ 0.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccidentsAdenineAdenosine DiphosphateAmino Acid SequenceAmino AcidsBindingBinding ProteinsBiologicalCatalytic RNACellsComplexComputer Retrieval of Information on Scientific Projects DatabaseComputer SimulationCyclic AMPCysteineCytoplasmic ProteinElementsEnzymesEvolutionExhibitsFamilyFrequenciesFundingGlycineGrantGuanosine TriphosphateHydrogen BondingImageryIn VitroInformaticsInstitutionIntegral Membrane ProteinIonsLeadMembraneMembrane ProteinsModelingMutationPatternPhenylalanineProtein DatabasesProtein FamilyProteinsResearchResearch PersonnelResolutionResourcesSideSourceSpecificityTechniquesTyrosineUnited States National Institutes of HealthWaterX-Ray CrystallographyZincalpha helixanalogbeta pleated sheetbiocomputinginterestnovelpointed proteinpolypeptideprematurepressureprotein structurethree dimensional structure
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
The origins of water-soluble proteins appear to be considerably more difficult to identify than the origins of membrane-bound proteins. Most transmembrane proteins, even those that are functionally and structurally complex, are built of a small number of structural elements that are shared across protein families. Moreover, there are simple, natural or synthetic models consisting of the same elements that can perform essential membrane-related functions. This is not the case with cytoplasmic proteins. In contemporary cells, they are usually quite large by protobiological standards, but in contrast to membrane proteins they cannot be significantly reduced in size without loss of activity.
Using a novel in vitro technique, Keefe and Szostak selected ATP-binding proteins from six trillion random polypeptides. They found four new protein families, each containing proteins with highly similar amino acid sequences that were unrelated to each other or to anything found in the current protein databases. The frequency of finding ATP-binding proteins appears to
be similar to the frequency of finding ATP-binding ribozymes.
Proteins from one family have been characterized in fair detail. The originally selected protein contained 80 amino acids but deletion studies revealed that the minimal binding unit is less than 50 amino acids long and, thus, is the smallest known ATP-binding protein. The proteins are highly selective towards ATP and its
close analog, adenosine diphosphate (ADP), as they bind neither guanosine triphosphate (GTP) nor cyclic AMP. However, their sequences do not contain any already identified ATP-binding motifs. To function, they require zinc ions and contain four conserved cysteine residues. More recently, the high resolution, three-dimensional structure of a protein from the family was solved using X-ray crystallography. As all biological, water-soluble proteins, this structure has a hydrophobic core, but exhibits a novel fold. It consists of a three-stranded
antiparallel beta-sheet and two nonadjacent alpha-helices. ADP is stabilized in
the binding pocket by stacking interactions with phenylalanine and tyrosine residues and by hydrogen bonds to several side chains in the protein. Selectivity of binding appears to be insured by hydrogen bonds between the N1, N3 and N6 of adenine and methianine-45 and glycine-63. A zinc ion is coordinated by the conserved cysteines in a region not adjacent to the binding pocket.
The ATP-binding protein is a very interesting protobiological model because it is the first example of a simple, functional protein that has not been a subject of long evolutionary optimization. However, its folding pattern may be evolutionarily deficient. For example, it may not have the capability to acquire new specificity through mutations. We propose to examine the protein from this point of view and, if necessary, redesign its sequence in an attempt to eliminate the deficiencies without altering the fold. If this task were successful it would lead to the creation of a novel fold that appears to be suitable for evolution, thus providing an empirical argument supporting
an "evolutionary accident" hypothesis of the origin of enzymes. If we found that the sequence could not be appropriately redesigned it would suggest that the fold, even if it were present among protobiological proteins, was not likely to survive subsequent evolutionary pressures. Although it would be clearly premature to draw conclusions from a single negative example, this result would hint that a hypothesis about evolutionary pruning of protein structures is worth serious considerations. In either case, we would gain an understanding how to construct and identify good candidate models for evolutionarily viable protobiological enzymes.
这个子项目是众多研究子项目之一
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREW POHORILLE其他文献
ANDREW POHORILLE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREW POHORILLE', 18)}}的其他基金
COMPUTER MODELING OF THE ANTIAMOEBIN ION CHANNEL
抗阿米巴离子通道的计算机建模
- 批准号:
8363639 - 财政年份:2011
- 资助金额:
$ 0.89万 - 项目类别:
相似海外基金
The Role of Adenine Nucleotide Translocase in Mitochondrial Dysfunction Associated Senescence in Chronic Obstructive Pulmonary Disease (COPD)
腺嘌呤核苷酸转位酶在慢性阻塞性肺病(COPD)线粒体功能相关衰老中的作用
- 批准号:
10633608 - 财政年份:2023
- 资助金额:
$ 0.89万 - 项目类别:
Pathways of Succinate Accumulation and Adenine Nucleotide Depletion in Cardiac Ischemia
心脏缺血中琥珀酸积累和腺嘌呤核苷酸消耗的途径
- 批准号:
10794933 - 财政年份:2022
- 资助金额:
$ 0.89万 - 项目类别:
Pathways of Succinate Accumulation and Adenine Nucleotide Depletion in Cardiac Ischemia
心脏缺血中琥珀酸积累和腺嘌呤核苷酸消耗的途径
- 批准号:
10534031 - 财政年份:2022
- 资助金额:
$ 0.89万 - 项目类别:
Development of nobel assay methods for miRNA and adenine methyltransferase using FRET
使用 FRET 开发 miRNA 和腺嘌呤甲基转移酶的诺贝尔检测方法
- 批准号:
21K05120 - 财政年份:2021
- 资助金额:
$ 0.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Critical assessment of DNA adenine methylation in brain cells from healthy aging and Alzheimer's disease
健康老龄化和阿尔茨海默病脑细胞 DNA 腺嘌呤甲基化的批判性评估
- 批准号:
10365337 - 财政年份:2021
- 资助金额:
$ 0.89万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10033546 - 财政年份:2020
- 资助金额:
$ 0.89万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10613902 - 财政年份:2020
- 资助金额:
$ 0.89万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10226235 - 财政年份:2020
- 资助金额:
$ 0.89万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10396102 - 财政年份:2020
- 资助金额:
$ 0.89万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10705982 - 财政年份:2020
- 资助金额:
$ 0.89万 - 项目类别:














{{item.name}}会员




