ION CHANNEL PROTEINS IN MEMBRANES
膜中的离子通道蛋白
基本信息
- 批准号:6456770
- 负责人:
- 金额:$ 27.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-01 至 2003-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our research focuses on the Influenza-A M2 protein, a small
homotetrameric, voltage-gated ion channel. Each monomer is 97 amino
acids in length, and contains a single transmembrane (TM) domain of 19
residues. This channel is very effective in transporting protons and
screens out other types of ions. Although no high resolution
structural data for M2 are available to date, recent NMR and CD
studies of this protein in phospholipid bilayers strongly suggest that
the TM region is alpha-helical and has the quaternary structure of a
4-helix bundle. The mechanisms of channel gating by M2 is also
currently unknown. There are two main hypotheses regarding gating of
protons. One considers the formation of a water wire through the
channel and the ability of such a structure to transfer protons
through the channel. The second hypothesis is based on a proton
shuttle mechanism mediated by four intraluminal histidine residues
forming the gate. Our aim in this study has been to elucidate the
gating mechanism of M2, and to demonstrate the stability of a
structural model of M2 in an explicit water-phospholipid bilayer
system. We have performed several molecular dynamics simulations,
each consisting of a trajectory at least one nanosecond long. Each
simulation corresponded to a different protonation state of the
histidine residues in the gate. The unprotonated and single
protonated forms involved in the proton shuttle mechanism were found
to be stable over the full length of the trajectory. Furthermore, the
orientation of water molecules inside the channel was conducive to
effective proton transfer. In contrast, the form in which all four
histidine residues are protonated, required in the water-wire
mechanism, was unstable and disassociated on a timescale of 400 - 700
ps. Our results demonstrate that proton shuttle involving histidine
residues of the protein is the most likely mechanism of proton
transport in the M2 channel.
我们的研究重点是流感a- M2蛋白,一种小的
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREW POHORILLE其他文献
ANDREW POHORILLE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREW POHORILLE', 18)}}的其他基金
COMPUTER MODELING OF THE ANTIAMOEBIN ION CHANNEL
抗阿米巴离子通道的计算机建模
- 批准号:
8363639 - 财政年份:2011
- 资助金额:
$ 27.32万 - 项目类别:
COMPUTER SIMULATION OF THE INFLUENZA M2 CHANNEL
M2 流感通道的计算机模拟
- 批准号:
7723515 - 财政年份:2008
- 资助金额:
$ 27.32万 - 项目类别:
COMPUTER SIMULATION OF THE INFLUENZA M2 CHANNEL
M2 流感通道的计算机模拟
- 批准号:
7367788 - 财政年份:2006
- 资助金额:
$ 27.32万 - 项目类别:
相似海外基金
Elusidation for Toxicity Mechanism of Synthetic Cannabinoids by Multi-omics Approach: Focusing on Cardiovascular System
多组学方法阐明合成大麻素的毒性机制:聚焦心血管系统
- 批准号:
23K09762 - 财政年份:2023
- 资助金额:
$ 27.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Silver Nanoparticle Toxicity in the Cardiovascular System of Brook Trout
银纳米颗粒对布鲁克鳟鱼心血管系统的毒性
- 批准号:
573306-2022 - 财政年份:2022
- 资助金额:
$ 27.32万 - 项目类别:
University Undergraduate Student Research Awards
Dynamic models of the cardiovascular system capturing years, rather than heartbeats
心血管系统的动态模型捕捉的是岁月,而不是心跳
- 批准号:
10708040 - 财政年份:2022
- 资助金额:
$ 27.32万 - 项目类别:
Functional roles of Klf-typed transcription factors in cardiovascular system
Klf型转录因子在心血管系统中的功能作用
- 批准号:
22K06235 - 财政年份:2022
- 资助金额:
$ 27.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studying classical inflammatory and repair neutrophils in cardiovascular system using novel in vivo imaging approaches
使用新型体内成像方法研究心血管系统中的经典炎症和修复中性粒细胞
- 批准号:
469043 - 财政年份:2022
- 资助金额:
$ 27.32万 - 项目类别:
Operating Grants
Investigating the influence of biomimetic cues in cardiovascular system formation
研究仿生线索对心血管系统形成的影响
- 批准号:
RGPIN-2017-06621 - 财政年份:2022
- 资助金额:
$ 27.32万 - 项目类别:
Discovery Grants Program - Individual
Development of diagnostic and predictive computational mechanics methods for cardiovascular system
心血管系统诊断和预测计算力学方法的开发
- 批准号:
RGPIN-2017-05349 - 财政年份:2022
- 资助金额:
$ 27.32万 - 项目类别:
Discovery Grants Program - Individual
Dynamic models of the cardiovascular system capturing years, rather than heartbeats
心血管系统的动态模型捕捉的是岁月,而不是心跳
- 批准号:
10487819 - 财政年份:2022
- 资助金额:
$ 27.32万 - 项目类别:
Systems Approach to Understanding Cardiovascular Disease and Arrhythmias - Cell diversity in the cardiovascular system, cell-autonomous and cell-cell signaling
了解心血管疾病和心律失常的系统方法 - 心血管系统中的细胞多样性、细胞自主和细胞间信号传导
- 批准号:
10386681 - 财政年份:2021
- 资助金额:
$ 27.32万 - 项目类别:
Building the cardiovascular system in early embryos
在早期胚胎中构建心血管系统
- 批准号:
2586082 - 财政年份:2021
- 资助金额:
$ 27.32万 - 项目类别:
Studentship














{{item.name}}会员




