Simulation of kinetic effects in turbulence and collisionless shocks

湍流和无碰撞冲击中的动力学效应模拟

基本信息

  • 批准号:
    PP/E001424/1
  • 负责人:
  • 金额:
    $ 27.45万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

This project explores some of the key parts of the space environment around our Earth: the solar wind and the Earth's bow shock. Finding out about the Earth's bow shock helps us to understand the relationships between the Sun and the Earth. It is also useful if we want to understand other astrophysical environments, around other stars or in super novae explosions, because shock waves are also found there. Shock waves are important because they are places where flow energy can be turned into both thermal energy by increasing the temperature of the gas, and also into energy in energetic particles such as cosmic rays. The outer layer of the sun, the corona, because it is so hot, streams away from the sun at a high speed. This is called the solar wind. It is a plasma or a completely ionized gas made from charged particles, so that magnetic and electric fields are important in its evolution. The solar wind travels faster than any wave (like a sound wave), so it is a supersonic flow. A shock wave, like that made by supersonic aircraft, is made in the solar wind just in front of the Earth. (In fact the obstacle created by the Earth's magnetic field - the magnetosphere.) The solar wind is an example of an astrophysical flow that can actually be studied by in-situ sampling. This has given us an incredibly detailed view of the waves and particles that make up the solar wind. It turns out that the flow is turbulent, so that some of the energy flow occurs between the fluctuations in the wind. Energy cascades from long wavelengths to short, and at some stage the wave energy dissipates and heats the particles. This process affects the overall expansion of the wind. It is a key process in astrophysics which is not fully understood. Astrophysical shocks are complex and difficult to understand because, unlike gases on the Earth, the particles in the plasma hardly ever collide. Nevertheless, observations by spacecraft show that there can be structures in the bow shock as small as 100km, even though the whole shock has a size across of many thousands of km. The project will use computer simulations of plasmas, such as the solar wind, to study how the particles and fields behave at collision shocks. The simulations are a type known as kinetic, so that the computer has a mathematical model of the plasma as consisting of many millions of individual particles with position and velocity, and also magnetic and electric fields. The project uses the latest computer simulation techniques, using large clusters of PC's. Collisionless shocks have turbulent transitions, even though they may be on different scale lengths. We will use simulations to look in detail at the types of waves and turbulence at different types of shocks. Sometimes the waves are small ripples, and our simulations will be able to shed light on whether they are consistent with observations. For other types of the shock, the turbulence fills a large region of space, and there are copious amounts of energetic particles which affect the waves and turbulence. We will carry out very large computer simulations to study the types of waves that might be observed and how they can produce the energetic particles. We will also study the turbulence in the solar wind, and how it damps and heats particles, by doing large simulations which include both electrons and protons. There are some theories for the damping, and we will use the simulations to make comparisons with these theories. One of the problems in understanding the solar wind flow is explaining the development of features in the particle distribution functions (such as beams and other distortions). These features can only be explainable using kinetic physics (i.e., including the dynamics of particles), so particle simulations are vital to understanding these processes.
该项目探索地球周围空间环境的一些关键部分:太阳风和地球弓形激波。了解地球的弓形激波有助于我们理解太阳和地球之间的关系。如果我们想了解其他恒星周围或超新星爆炸中的其他天体物理环境,它也很有用,因为那里也有冲击波。冲击波很重要,因为它们是流动能量可以通过增加气体温度转化为热能的地方,也可以转化为高能粒子(如宇宙射线)的能量。太阳的外层,日冕,因为它是如此的热,流远离太阳在高速。这就是所谓的太阳风。它是一种等离子体或由带电粒子组成的完全电离的气体,因此磁场和电场在其演变中很重要。太阳风的速度比任何波(如声波)都快,所以它是一种超音速流。冲击波,就像超音速飞机所产生的那样,是在地球前面的太阳风中产生的。(In事实上,地球磁场所造成的障碍-磁层。太阳风是一个天体物理流动的例子,实际上可以通过现场采样进行研究。这让我们对构成太阳风的波和粒子有了一个非常详细的了解。事实证明,流动是湍流,使一些能量流之间发生的波动,在风中。能量从长波长到短波长级联,在某个阶段,波能耗散并加热粒子。这一过程影响了风的整体扩张。这是天体物理学中一个尚未完全理解的关键过程。天体物理冲击是复杂和难以理解的,因为与地球上的气体不同,等离子体中的粒子几乎不会发生碰撞。然而,宇宙飞船的观测表明,即使整个激波的大小跨越数千公里,弓形激波中也可能存在小至100公里的结构。该项目将使用计算机模拟等离子体,如太阳风,以研究粒子和场在碰撞冲击中的行为。模拟是一种被称为动力学的类型,因此计算机具有等离子体的数学模型,该模型由数百万个具有位置和速度的单个粒子以及磁场和电场组成。该项目使用最新的计算机模拟技术,使用大型PC集群。无碰撞冲击有湍流转变,即使它们可能在不同的尺度长度上。我们将使用模拟来详细研究不同类型冲击下的波和湍流类型。有时候,波是小涟漪,我们的模拟将能够揭示它们是否与观测结果一致。对于其他类型的激波,湍流充满了大范围的空间,并且有大量的高能粒子影响波和湍流。我们将进行非常大的计算机模拟,以研究可能观察到的波的类型以及它们如何产生高能粒子。我们还将研究太阳风中的湍流,以及它如何通过包括电子和质子的大型模拟来阻尼和加热粒子。有一些阻尼理论,我们将使用模拟来与这些理论进行比较。理解太阳风流动的问题之一是解释粒子分布函数中特征的发展(如光束和其他扭曲)。这些特征只能用动力学物理学来解释(即,包括粒子动力学),因此粒子模拟对于理解这些过程至关重要。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
IMPLICATIONS OF A NON-MODAL LINEAR THEORY FOR THE MARGINAL STABILITY STATE AND THE DISSIPATION OF FLUCTUATIONS IN THE SOLAR WIND
  • DOI:
    10.1088/0004-637x/715/1/260
  • 发表时间:
    2010-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Camporeale;T. Passot;D. Burgess
  • 通讯作者:
    E. Camporeale;T. Passot;D. Burgess
ELECTRON TEMPERATURE ANISOTROPY IN AN EXPANDING PLASMA: PARTICLE-IN-CELL SIMULATIONS
  • DOI:
    10.1088/0004-637x/710/2/1848
  • 发表时间:
    2010-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Camporeale;D. Burgess
  • 通讯作者:
    E. Camporeale;D. Burgess
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Burgess其他文献

Nutrient and Carbon Export From a Tidewater Glacier to the Coastal Ocean in the Canadian Arctic Archipelago
从潮水冰川到加拿大北极群岛沿海海洋的营养物和碳输出
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patrick Williams;M. Bhatia;David Burgess;S. Waterman;M. Roberts;Erin M. Bertrand
  • 通讯作者:
    Erin M. Bertrand
Particle transport in hybrid PIC shock simulations: A comparison of diagnostics
混合 PIC 冲击模拟中的粒子输运:诊断比较
Electron acceleration at quasi-perpendicular shocks in sub- and supercritical regimes: 2D and 3D simulations
亚临界和超临界状态下准垂直冲击下的电子加速:2D 和 3D 模拟
ACCURACY OF INTERPRETING FAX TO EMAIL ST-ELEVATION MYOCARDIAL INFARCTION ELECTROCARDIOGRAMS VIEWED ON SMARTPHONES
  • DOI:
    10.1016/s0735-1097(16)30634-9
  • 发表时间:
    2016-04-05
  • 期刊:
  • 影响因子:
  • 作者:
    Elias Nehme;John Riskallah;David Burgess;Ajita Kanthan;Peter Fahmy;Rajan Rehan
  • 通讯作者:
    Rajan Rehan
Energetic electrons downstream of Earth's bow shock: Simulations of acceleration by shock structure
地球弓形激波下游的高能电子:激波结构加速的模拟
  • DOI:
    10.1029/2000gl000095
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    R. E. Lowe;David Burgess
  • 通讯作者:
    David Burgess

David Burgess的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Burgess', 18)}}的其他基金

Heliospheric and Planetary Research 2023-2026
日光层和行星研究 2023-2026
  • 批准号:
    ST/X000974/1
  • 财政年份:
    2023
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Research Grant
Heliospheric and Planetary Research 2020-2023
日光层和行星研究 2020-2023
  • 批准号:
    ST/T00018X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Research Grant
Collaborative Research: BIOMAPS Control of Spindle Positioning and Cytokinesis
合作研究:BIOMAPS 控制纺锤体定位和细胞分裂
  • 批准号:
    1244425
  • 财政年份:
    2013
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Continuing Grant
Astronomy Research at Queen Mary 2012-2015
玛丽女王大学天文学研究 2012-2015
  • 批准号:
    ST/J001546/1
  • 财政年份:
    2012
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Research Grant
Visitors in Astronomy
天文学参观者
  • 批准号:
    ST/H002545/1
  • 财政年份:
    2010
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Research Grant
Kinetic plasma turbulence in space and astrophysical flows
空间中的动力学等离子体湍流和天体物理流
  • 批准号:
    ST/H002731/1
  • 财政年份:
    2010
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Research Grant
Role and Regulation of Early Cell Polarity in Sea Urchin Embryos
海胆胚胎早期细胞极性的作用和调控
  • 批准号:
    0615233
  • 财政年份:
    2006
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Standard Grant
SACNAS: Leading Students to Careers in Science and Engineering Research and Education
SACNAS:引导学生从事科学工程研究和教育职业
  • 批准号:
    9910231
  • 财政年份:
    1999
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Standard Grant
Ultrastructure and Biochemistry of Microvillus Growth
微绒毛生长的超微结构和生物化学
  • 批准号:
    7704313
  • 财政年份:
    1977
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Standard Grant

相似国自然基金

关于Kinetic Cucker-Smale模型及相关耦合模型的适定性研究
  • 批准号:
    12001530
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
带奇性的 Kinetic Cucker-Smale 模型在随机环境中的平均场极限及时间渐近行为研究
  • 批准号:
    11801194
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
多介质流体的移动网格动理学有限体积方法研究
  • 批准号:
    10971016
  • 批准年份:
    2009
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目
Kinetic Monte Carlo 模拟薄膜生长机理的研究
  • 批准号:
    10574059
  • 批准年份:
    2005
  • 资助金额:
    12.0 万元
  • 项目类别:
    面上项目

相似海外基金

ERI: Experimental Investigation of Compressibility Effects on Turbulent Kinetic Energy Production in Supersonic Flows
ERI:压缩性对超音速流中湍动能产生的影响的实验研究
  • 批准号:
    2347416
  • 财政年份:
    2024
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Standard Grant
RUI: Large Kinetic Isotope Effects as Mechanistic Indicators in Organometallic Chemistry
RUI:大动力学同位素效应作为有机金属化学的机械指标
  • 批准号:
    2247038
  • 财政年份:
    2023
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Standard Grant
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
  • 批准号:
    10752370
  • 财政年份:
    2023
  • 资助金额:
    $ 27.45万
  • 项目类别:
Ultra-High Performance Brain-dedicated PET scanner for Neurology and Neuro-oncology imaging
用于神经病学和神经肿瘤学成像的超高性能大脑专用 PET 扫描仪
  • 批准号:
    10737257
  • 财政年份:
    2023
  • 资助金额:
    $ 27.45万
  • 项目类别:
Temperature Dependence of Hydride Kinetic Isotope Effects in Solution to Test the Proposed Role of Protein Dynamics in Enzyme Catalysis
溶液中氢化物动力学同位素效应的温度依赖性,以测试蛋白质动力学在酶催化中的拟议作用
  • 批准号:
    10580264
  • 财政年份:
    2022
  • 资助金额:
    $ 27.45万
  • 项目类别:
Single molecule kinetic studies of gamma-secretase/substrate interaction and the effects of AD-causing mutations
γ-分泌酶/底物相互作用的单分子动力学研究以及 AD 引起的突变的影响
  • 批准号:
    10323672
  • 财政年份:
    2021
  • 资助金额:
    $ 27.45万
  • 项目类别:
Understanding the Effects of Kinetic Limitations on Degradation Rates for Different Substrates in MFCs and the Impact on Trophic Layers on these Rates
了解动力学限制对 MFC 中不同底物降解速率的影响以及营养层对这些速率的影响
  • 批准号:
    2595457
  • 财政年份:
    2021
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Studentship
Nonlinear Fluid and Kinetic Effects in Nonneutral Plasmas
非中性等离子体中的非线性流体和动力学效应
  • 批准号:
    2106332
  • 财政年份:
    2021
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Continuing Grant
Modelling kinetic effects on the heat exhaust in high power tokamaks
对高功率托卡马克中排热的动力学效应进行建模
  • 批准号:
    2440958
  • 财政年份:
    2020
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Studentship
Incorporating molecular and impurity effects into kinetic parallel electron transport modelling of scrape-off layer detachment
将分子和杂质效应纳入刮除层分离的动力学并行电子传输模型中
  • 批准号:
    2277366
  • 财政年份:
    2019
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了