Ceramic scaffolds with engineered topography and chemistry
具有工程形貌和化学特性的陶瓷支架
基本信息
- 批准号:8019583
- 负责人:
- 金额:$ 5.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-02-01 至 2011-06-29
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcidsAddressAgingApatitesArchitectureBone RegenerationBone ResorptionBone TissueBone TransplantationBone remodelingCadaverCalvariaCeramicsCharacteristicsChemicalsChemistryComplexCompressive StrengthCrystallizationDefectDevelopmentEngineeringEnsureExhibitsGlassGoalsGoldHarvestHistopathologyIn VitroIon ExchangeKineticsLeadMacorMeasuresMechanicsModelingMorbidity - disease rateNanotopographyNiobiumOperative Surgical ProceduresOsteogenesisOxidesPatientsPhasePolymersPoriferaPorosityProcessPropertyRattusReplica TechniquesResearchRiskScheduleSiteSolubilityStrontiumStructureSurfaceTestingX-Ray Computed Tomographybasebonechemical propertydensitydesigndisease transmissionfluorapatitein vivolead oxidenanosizednovelpublic health relevancescaffold
项目摘要
DESCRIPTION (provided by applicant): The research proposed in this application is directed at developing novel ceramic scaffolds that are bioresorbable, bioactive, osteoconductive and exhibit high strength. These goals will be achieved through stepwise engineering of the ceramic microstructure, scaffold architecture, micro and nanotopography and surface chemistry. The rationale is that there is currently no synthetic scaffold material that is bioactive, resorbable and exhibits biologically compatible compressive strength. We will first investigate the crystallization kinetics and mechanical properties of sintered niobium- doped fluorapatite (FAp) ceramics with the aim of developing a highly crystalline ceramic with nanosized FAp crystals (Aim 1). We will select the best composition with niobium additions that will induce phase separation, lead to the crystallization of nanosized crystals and high crystallinity. We will then prepare FAp ceramic scaffolds using a carefully engineered approach that combines a pre-coating step, a glazing step and a chemical etching step (Aim 2). We postulate that optimization of the scaffold architecture will lead to superior mechanical properties and that the chemical etching step will promote a complex three-dimensional surface micro and nanotopography later stimulating contact osteogenesis. The effect of ion-exchange on surface chemistry, solubility and bioactivity of the scaffolds will be tested in Aim 3. The overall rationale is that strontium substitution in the apatite structure will increase solubility and bioactivity. Finally, the resorption and bone regeneration ability of the scaffolds will be tested in vivo using a rat calvarial critical defect model and a combination of state of the art in vivo micro-computed tomography and histopathology (Aim 4). The hypotheses tested are that the surface chemistry and topography of the scaffolds will enhance bone regeneration and that the resorption rate will be compatible with the rate of bone regeneration.
PUBLIC HEALTH RELEVANCE: There is currently no ideal bone graft substitute. Autogenous bone is still considered the gold standard despite its associated morbidity. There is currently no synthetic material that is bioactive, available as a 3D-scaffold with mechanical integrity, exhibits nanotopography and is resorbable at a controlled rate. We plan to develop a synthetic ceramic scaffold that will (i) eliminate the need for a second surgical site to harvest autogenous bone, (ii) address patients concerns about the use of cadaver bone tissue and risk of disease transmission, (iii) offer superior mechanical properties compared to currently available synthetic scaffold materials (iv) promote osteoconduction and contact osteogenesis through engineered surface topography, (v) exhibit a controlled resorption rate compatible with bone regeneration rates via engineered surface chemistry, and (vi) assist in the management of congenital and acquired bony defects.
描述(申请人提供):本申请中提出的研究旨在开发具有生物可吸收、生物活性、骨传导和高强度的新型陶瓷支架。这些目标将通过陶瓷微结构、支架结构、微和纳米形貌以及表面化学的逐步工程来实现。其基本原理是,目前还没有一种具有生物活性、可吸收和具有生物相容性的抗压强度的合成支架材料。我们将首先研究掺Nb氟磷灰石(FAP)陶瓷的晶化动力学和力学性能,目的是开发一种具有纳米FAP晶体的高结晶度陶瓷(目标1)。我们将选择添加Nb的最佳成分,以诱导相分离,导致纳米晶体的结晶和高结晶度。然后,我们将使用一种精心设计的方法来制备FAP陶瓷支架,该方法结合了预涂覆步骤、上釉步骤和化学蚀刻步骤(目标2)。我们推测,支架结构的优化将导致优异的力学性能,化学蚀刻步骤将促进复杂的三维表面微和纳米形貌,随后刺激接触性成骨。离子交换对支架表面化学、溶解度和生物活性的影响将在目标3中进行测试。总体原理是,锶在磷灰石结构中的替代将增加溶解度和生物活性。最后,将使用大鼠颅骨严重缺损模型和体内最先进的显微计算机断层扫描和组织病理学相结合的方法,在体内测试支架的吸收和骨再生能力(Aim 4)。被测试的假设是支架的表面化学和表面形貌将促进骨再生,并且吸收率将与骨再生的速率相一致。
与公共健康相关:目前还没有理想的骨移植替代品。自体骨仍然被认为是黄金标准,尽管其相关的发病率。目前还没有一种具有生物活性的合成材料,可以作为具有机械完整性的3D支架,显示出纳米形貌,并且可以以受控的速度进行吸收。我们计划开发一种合成陶瓷支架,它将:(I)消除第二个手术部位获取自体骨的需要;(Ii)解决患者对使用身体骨组织和疾病传播风险的担忧;(Iii)提供比现有合成支架材料更优越的力学性能;(Iv)通过工程化表面形貌促进骨传导和接触成骨;(V)通过工程表面化学表现出与骨再生率相适应的受控吸收率,以及(Vi)帮助修复先天性和获得性骨缺损。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Isabelle L Denry其他文献
Isabelle L Denry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Isabelle L Denry', 18)}}的其他基金
Novel honeycomb gallo-silicate microspheres for rapid hemostasis of oral and maxillofacial wounds
新型蜂窝状硅酸微球用于口腔颌面部伤口快速止血
- 批准号:
10378211 - 财政年份:2021
- 资助金额:
$ 5.03万 - 项目类别:
Novel honeycomb gallo-silicate microspheres for rapid hemostasis of oral and maxillofacial wounds
新型蜂窝状硅酸微球用于口腔颌面部伤口快速止血
- 批准号:
9914640 - 财政年份:2020
- 资助金额:
$ 5.03万 - 项目类别:
Smart Release Antimicrobial Coatings for Dental Implants
用于牙种植体的智能释放抗菌涂层
- 批准号:
9178449 - 财政年份:2016
- 资助金额:
$ 5.03万 - 项目类别:
Synergistic Phase Combination for High Strength Ultrafine-Grained Bioceramics
高强度超细晶生物陶瓷的协同相组合
- 批准号:
9104437 - 财政年份:2016
- 资助金额:
$ 5.03万 - 项目类别:
Ceramic scaffolds with engineered topography and chemistry
具有工程形貌和化学特性的陶瓷支架
- 批准号:
8402543 - 财政年份:2010
- 资助金额:
$ 5.03万 - 项目类别:
Ceramic scaffolds with engineered topography and chemistry
具有工程形貌和化学特性的陶瓷支架
- 批准号:
8281742 - 财政年份:2010
- 资助金额:
$ 5.03万 - 项目类别:
Ceramic scaffolds with engineered topography and chemistry
具有工程形貌和化学特性的陶瓷支架
- 批准号:
8590115 - 财政年份:2010
- 资助金额:
$ 5.03万 - 项目类别:
Ceramic scaffolds with engineered topography and chemistry
具有工程形貌和化学特性的陶瓷支架
- 批准号:
8204587 - 财政年份:2010
- 资助金额:
$ 5.03万 - 项目类别:
High Toughness Textured Ceramics for Biomedical Use
生物医学用高韧性织构陶瓷
- 批准号:
7056190 - 财政年份:2000
- 资助金额:
$ 5.03万 - 项目类别:
相似国自然基金
具有抗癌活性的天然产物金霉酸(Aureolic acids)全合成与选择性构建2-脱氧糖苷键
- 批准号:22007039
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
海洋放线菌来源聚酮类化合物Pteridic acids生物合成机制研究
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
手性Lewis Acids催化的分子内串联1,5-氢迁移/环合反应及其在构建结构多样性手性含氮杂环化合物中的应用
- 批准号:21372217
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
对空气稳定的新型的有机金属Lewis Acids催化剂制备、表征与应用研究
- 批准号:21172061
- 批准年份:2011
- 资助金额:30.0 万元
- 项目类别:面上项目
钛及含钛Lewis acids促臭氧/过氧化氢体系氧化性能的广普性、高效性及其机制
- 批准号:21176225
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Zip Nucleic Acids引物对高度降解和低拷贝DNA检材的STR分型研究
- 批准号:81072511
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
海洋天然产物Makaluvic acids 的全合成及其对南海鱼虱存活的影响
- 批准号:30660215
- 批准年份:2006
- 资助金额:21.0 万元
- 项目类别:地区科学基金项目
相似海外基金
CAREER: Highly Rapid and Sensitive Nanomechanoelectrical Detection of Nucleic Acids
职业:高度快速、灵敏的核酸纳米机电检测
- 批准号:
2338857 - 财政年份:2024
- 资助金额:
$ 5.03万 - 项目类别:
Continuing Grant
Lipid nanoparticle-mediated Inhalation delivery of anti-viral nucleic acids
脂质纳米颗粒介导的抗病毒核酸的吸入递送
- 批准号:
502577 - 财政年份:2024
- 资助金额:
$ 5.03万 - 项目类别:
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 5.03万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 5.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 5.03万 - 项目类别:
Continuing Grant
Integrated understanding and manipulation of hypoxic cellular functions by artificial nucleic acids with hypoxia-accumulating properties
具有缺氧累积特性的人工核酸对缺氧细胞功能的综合理解和操纵
- 批准号:
23H02086 - 财政年份:2023
- 资助金额:
$ 5.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 5.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 5.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 5.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Synthetic analogues based on metabolites of omega-3 fatty acids protect mitochondria in aging hearts
基于 omega-3 脂肪酸代谢物的合成类似物可保护衰老心脏中的线粒体
- 批准号:
477891 - 财政年份:2023
- 资助金额:
$ 5.03万 - 项目类别:
Operating Grants