Imaging synapse formation using novel microfluidic platforms
使用新型微流体平台对突触形成进行成像
基本信息
- 批准号:8094187
- 负责人:
- 金额:$ 19.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressAxonBrainCell CommunicationCell Culture TechniquesCellsCoculture TechniquesCommunicationComplexCytoskeletonDNA Sequence RearrangementDendritesDendritic SpinesDevelopmentDevice DesignsDevicesEnvironmentExcitatory SynapseFamilyFluorescence Resonance Energy TransferGuanosine Triphosphate PhosphohydrolasesImageIndiumIndividualIntercellular JunctionsLeadLifeMediatingMicrofluidic MicrochipsMicrofluidicsMicroscopyModificationMolecularNeuraxisNeurogliaNeuronsPeripheral Nervous SystemPlayPresynaptic TerminalsProcessProteinsRegulationResolutionRoleSignal TransductionStagingStructureSynapsesTechniquesTechnologyTestingTimeVertebral columnbasecognitive functiondesignimage processingin vivoinnovationinterestnervous system disorderneuromuscularnovelphotoactivationpostsynapticresearch studyrhorho GTP-Binding Proteinsselective expressionspatiotemporalsynaptic functionsynaptogenesis
项目摘要
DESCRIPTION (provided by applicant): Synapses are highly specialized cell-cell junctions that mediate communication between neurons. These structures are composed of pre- and post-synaptic terminals and are the basis for the complex circuitry found in the brain. Most postsynaptic terminals of excitatory synapses take the form of dendritic spines, which are actin-rich protrusions that emanate from the dendrite shaft. Not surprisingly, the formation and plasticity of dendritic spines and synapses play a central role in cognitive function and abnormalities in these structures are associated with a number of neurological disorders. Despite the importance of spines and synapses in the central nervous system, the molecular mechanisms that regulate the formation of these structures are not well understood. A limitation toward identifying key molecules that regulate spine and synapse formation has been the great difficulty in observing synapses as they form. We are developing novel microfluidic devices that will allow us to dynamically observe forming synapses (Specific Aim I). Several innovations in the design of these devices will significantly enhance our ability to image the early steps of synapse formation with high spatial and temporal resolution. In Specific Aim II, we will apply this technology to examining the spatiotemporal dynamics of actin during synaptic assembly. In addition, we will test our hypothesis that the activity of Rho family GTPases, which are key regulators of actin, is critical in the initial assembly and maturation of synapses. For these experiments, we will use cutting-edge microscopy technologies, including FRAP, photoactivation, and FRET to examine actin dynamics and regulation during synapse formation. The development of these microfluidic platforms will be of great interest and benefit to neurobiologist by providing a platform for identifying the key molecular signals that regulate the assembly of synapses.
PUBLIC HEALTH RELEVANCE: Project Narrative Abnormalities in the number, size, and morphology of dendritic spines and synapses are associated with many neurological and psychiatric disorders, including mental retardation, schizophrenia, autism, epilepsy, and Alzheimer's disease. We are developing novel microfluidic devices to dynamically image the molecular assembly of these structures. A better understanding of the key molecules that regulate spine and synapse formation could lead to novel therapeutic approaches for treating these disorders.
描述(由申请人提供):突触是高度特化的细胞-细胞连接,介导神经元之间的通信。 这些结构由突触前和突触后末端组成,是大脑中复杂电路的基础。 大多数兴奋性突触的突触后末端呈树枝状棘的形式,这些棘是从树枝状轴突发出的富含肌动蛋白的突起。 毫不奇怪,树突棘和突触的形成和可塑性在认知功能中起着核心作用,这些结构的异常与许多神经系统疾病有关。 尽管棘和突触在中枢神经系统中的重要性,但调节这些结构形成的分子机制还不清楚。 在识别调节棘和突触形成的关键分子方面的一个限制是,在突触形成时观察它们非常困难。 我们正在开发新的微流体设备,使我们能够动态观察突触的形成(具体目标I)。 这些设备设计中的几项创新将显著增强我们以高空间和时间分辨率成像突触形成早期步骤的能力。 在具体目标II中,我们将应用这项技术来研究突触组装过程中肌动蛋白的时空动力学。 此外,我们将测试我们的假设,即Rho家族GTP酶,这是肌动蛋白的关键调节因子,在突触的初始组装和成熟是至关重要的。 对于这些实验,我们将使用尖端的显微镜技术,包括FRAP,光活化和FRET检查突触形成过程中的肌动蛋白动力学和调节。 这些微流控平台的发展将提供一个平台,用于识别调节突触组装的关键分子信号,神经生物学家的极大兴趣和利益。
公共卫生关系:树突棘和突触在数量、大小和形态上的异常与许多神经和精神疾病有关,包括精神发育迟滞、精神分裂症、自闭症、癫痫和阿尔茨海默病。 我们正在开发新的微流控装置,以动态成像这些结构的分子组装。 更好地了解调节脊柱和突触形成的关键分子可能会导致治疗这些疾病的新治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deyu Li其他文献
Deyu Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deyu Li', 18)}}的其他基金
Mapping Brain Activity with High Spatiotemporal Resolution using Graphene Probes
使用石墨烯探针以高时空分辨率绘制大脑活动图
- 批准号:
10244939 - 财政年份:2017
- 资助金额:
$ 19.47万 - 项目类别:
Inhibitory Effect of Nitric Oxide on DNA Repair Enzymes
一氧化氮对DNA修复酶的抑制作用
- 批准号:
9232253 - 财政年份:2017
- 资助金额:
$ 19.47万 - 项目类别:
Exploring synaptic remodeling with graphene optoelectronic probes
用石墨烯光电探针探索突触重塑
- 批准号:
9234603 - 财政年份:2016
- 资助金额:
$ 19.47万 - 项目类别:
Exploring synaptic remodeling with graphene optoelectronic probes
用石墨烯光电探针探索突触重塑
- 批准号:
9025171 - 财政年份:2016
- 资助金额:
$ 19.47万 - 项目类别:
Imaging synapse formation using novel microfluidic platforms
使用新型微流体平台对突触形成进行成像
- 批准号:
8306755 - 财政年份:2011
- 资助金额:
$ 19.47万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 19.47万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 19.47万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 19.47万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 19.47万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 19.47万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 19.47万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 19.47万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 19.47万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 19.47万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 19.47万 - 项目类别:
Research Grant














{{item.name}}会员




