Mapping Brain Activity with High Spatiotemporal Resolution using Graphene Probes
使用石墨烯探针以高时空分辨率绘制大脑活动图
基本信息
- 批准号:10244939
- 负责人:
- 金额:$ 37.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-30 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressAlzheimer&aposs DiseaseAmacrine CellsAreaAxonBehaviorBrainBrain MappingCalciumCarbonCategoriesCell membraneCell physiologyCellsCentral Nervous System DiseasesCoculture TechniquesCognitiveComplexCouplingDataDendritesDendritic SpinesDevicesDiseaseDown SyndromeEffectivenessElectrodesElectronsElectrophysiology (science)EnvironmentEpilepsyExcitatory SynapseExposure toFragile X SyndromeFrequenciesGasesGlaucomaGoalsImaging TechniquesIn SituIn VitroIndividualLightMaintenanceMapsMeasuresMechanicsMediatingMembraneMicroelectrodesMicrofluidicsMicroscopyMorphologyMotorMusMyosin ATPaseNatureNeuraxisNeurobiologyNeuronsNeurosciencesNeurotransmittersOpticsPathologicPhysiologicalPopulationPropertyProteinsResearchResolutionRetinaRetinal Ganglion CellsSamplingScanningSchemeSchizophreniaSideSignal TransductionSiliconSiteSliceStimulusStretchingStructureSurfaceSynapsesSystemTechnologyTimeTissuesTransistorsVertebral columnVisual evoked cortical potentialWild Type Mouseautism spectrum disorderbasebiomaterial compatibilitychemokinedesignfallsflexibilityfluorescence imaginggrapheneimplantationin vivomicromanipulatormillisecondmonolayernervous system disorderneurotechnologyoperationoptical imagingpatch clamppostsynapticresponsesensorspatiotemporalsynaptogenesistemporal measurementtwo-dimensionalvisual mapvoltagevoltage sensitive dye
项目摘要
Project Summary
The central nervous system (CNS), the most complex and dynamic network found in nature, is composed
of billions of neurons with trillions of dendritic spines and synapses, including pre- and postsynaptic terminals.
The postsynaptic side of synapses can take the form of dendritic spines, which are small, actin-rich protrusions
that serve as sites of postsynaptic contact and signal integration for most of the excitatory synapses in the CNS.
Synapses relay signals between neighboring neurons in large neuronal networks, underscoring their vital
function in the CNS. Not surprisingly, abnormalities in dendritic spines/synapses are associated with a number
of CNS disorders, including Fragile-X syndrome, Down’s syndrome, Alzheimer’s disease, autism, schizophrenia,
and epilepsy, glaucoma, and intellectual disorders. It is, therefore, crucial to understand the relationships
between the functional connectivity map of neuronal networks and the physiological or pathological functions of
individual synapses and neurons. To address this challenge, we propose to integrate two-dimensional flexible
graphene membranes with scanning photocurrent microscopy to probe electrical activities of individual synapses
and neurons in the retina and brain, two of the three components of the CNS. A unique advantage of graphene
is that its whole volume is exposed to the environment, which maximizes its sensitivity to local electrochemical
potential change. For example, graphene transistors are capable of detecting individual gas molecules, due to
its high surface-area-to-volume ratio and high electron mobility (100 to 1000 times higher than silicon). The high
electron mobility also enables graphene transistors to operate at very high frequencies (up to 500 GHz), leading
to high temporal resolution. Because of its strength and flexibility, graphene membranes can adhere to cell
membranes or tissue slices to achieve high electrical sensitivity. Furthermore, monolayer graphene transmits
more than 97% of incident light, making it ideal to be used as transparent electrical devices that are compatible
with optical imaging techniques. In addition, graphene transistors and electrodes have demonstrated the
capability of stable operation at stretching up to 9%. As such, we propose to create an unprecedented
neurotechnology through a rare combination of flexible graphene transistors and scanning photocurrent
microscopy to simultaneously study the electrical activities of a large population of synapses and neurons in
vitro, in situ, and in vivo. This technology will allow us to decipher the functional connectivity map of neuronal
networks with high spatiotemporal resolution and high throughput.
项目摘要
中枢神经系统(CNS)是自然界中发现的最复杂和最动态的网络,由
数十亿个神经元的树突和突触,包括突触前和突触后的终末。
突触的突触后侧可以采取树突棘的形式,树突是一种小的富含肌动蛋白的突起
它们是中枢神经系统中大多数兴奋性突触的突触后接触和信号整合的场所。
突触在大型神经元网络中的相邻神经元之间传递信号,突显出它们至关重要
在中枢神经系统中发挥作用。毫不奇怪,树突棘/突触的异常与许多
中枢神经系统疾病,包括脆性X综合征、唐氏综合症、阿尔茨海默病、自闭症、精神分裂症、
以及癫痫、青光眼和智力障碍。因此,理解这些关系是至关重要的。
神经网络的功能连通图与神经网络的生理或病理功能之间的关系
单个突触和神经元。为了应对这一挑战,我们建议将二维柔性
扫描光电流显微镜下石墨烯膜探测单个突触的电活动
以及视网膜和大脑中的神经元,这是中枢神经系统的三个组成部分中的两个。石墨烯的独特优势
它的整个体积都暴露在环境中,这使其对局部电化学的敏感度最大化
潜在的变化。例如,石墨烯晶体管能够检测单个气体分子,这是因为
它的高表面积体积比和高电子迁移率(比硅高100到1000倍)。高潮
电子迁移率还使石墨烯晶体管能够在非常高的频率(高达500 GHz)下工作,领先于
到高时间分辨率。由于其强度和柔韧性,石墨烯薄膜可以附着在细胞上
薄膜或组织切片,以实现高电敏性。此外,单层石墨烯还可以传输
超过97%的入射光,使其成为兼容的透明电子设备的理想选择
利用光学成像技术。此外,石墨烯晶体管和电极已经证明
伸长率可达9%的稳定运行能力。因此,我们建议创造一个前所未有的
通过灵活的石墨烯晶体管和扫描光电流的罕见组合实现的神经技术
用显微镜同时研究大量突触和神经元的电活动
体外、在体和在体。这项技术将使我们能够破译神经元的功能连接图
具有高时空分辨率和高吞吐量的网络。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic Observation of Retinal Response to Pressure Elevation in a Microfluidic Chamber.
- DOI:10.1021/acs.analchem.1c05652
- 发表时间:2022-09-13
- 期刊:
- 影响因子:7.4
- 作者:Esteban-Linares, Alberto;Wareham, Lauren K.;Walmsley, Thayer S.;Holden, Joseph M.;Fitzgerald, Matthew L.;Pan, Zhiliang;Xu, Ya-Qiong;Li, Deyu
- 通讯作者:Li, Deyu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deyu Li其他文献
Deyu Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deyu Li', 18)}}的其他基金
Inhibitory Effect of Nitric Oxide on DNA Repair Enzymes
一氧化氮对DNA修复酶的抑制作用
- 批准号:
9232253 - 财政年份:2017
- 资助金额:
$ 37.99万 - 项目类别:
Exploring synaptic remodeling with graphene optoelectronic probes
用石墨烯光电探针探索突触重塑
- 批准号:
9234603 - 财政年份:2016
- 资助金额:
$ 37.99万 - 项目类别:
Exploring synaptic remodeling with graphene optoelectronic probes
用石墨烯光电探针探索突触重塑
- 批准号:
9025171 - 财政年份:2016
- 资助金额:
$ 37.99万 - 项目类别:
Imaging synapse formation using novel microfluidic platforms
使用新型微流体平台对突触形成进行成像
- 批准号:
8094187 - 财政年份:2011
- 资助金额:
$ 37.99万 - 项目类别:
Imaging synapse formation using novel microfluidic platforms
使用新型微流体平台对突触形成进行成像
- 批准号:
8306755 - 财政年份:2011
- 资助金额:
$ 37.99万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 37.99万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 37.99万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 37.99万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 37.99万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 37.99万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 37.99万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 37.99万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 37.99万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 37.99万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 37.99万 - 项目类别:
Research Grant