Inhibitory Effect of Nitric Oxide on DNA Repair Enzymes
一氧化氮对DNA修复酶的抑制作用
基本信息
- 批准号:9232253
- 负责人:
- 金额:$ 41.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:AreaBasic ScienceBindingBiochemicalBiochemical GeneticsBiologicalBiomimeticsBiophysicsBypassCell Cycle KineticsCell membraneCellsChemicalsCollaborationsComplexCore FacilityDNADNA AdductsDNA DamageDNA RepairDNA Repair EnzymesDNA Repair InhibitionDNA lesionDioxygenasesDiseaseEducationElectron Spin Resonance SpectroscopyEnvironmentEnzymesEscherichia coliFamilyGenomeGoalsHealthHumanImmune responseImpairmentIn VitroInduced MutationInflammationInflammation ProcessInstitutesIonsKineticsKnowledgeLaboratoriesLeadLesionMalignant NeoplasmsMammalian CellMassachusettsMeasuresMetalloproteinsModelingMolecularMolecular ModelsNitric OxideNucleic AcidsOligonucleotidesPathologic ProcessesPharmacologic SubstancePharmacy facilityPolymeraseProcollagen-Proline DioxygenasePropertyProtein FamilyProteinsReactionReportingResearchResearch InfrastructureRoleScienceSignaling MoleculeSiteStudentsSynthesis ChemistryTechnologyTestingTherapeuticTrainingUniversitiesWorkadductalpha ketoglutarateauthoritybasebiological systemscarcinogenesiscell injurycollegecytotoxicdesignenzyme activityexperimental studygenome integrityhistone demethylaseimprovedinhibitor/antagonistinsightinstrumentationmetal complexmolecular modelingpreventprogramsrepair enzymerepairedsmall moleculespectroscopic surveystudent mentoringtooltumorigenesisweaponsworking group
项目摘要
Abstract
Nitric oxide (NO), a signaling molecule over produced in the inflammation process, has been reported to induce
damage of cell membrane and lead to the accumulation of alkylated DNA adducts, such as 1,N6-ethenoadenine
(eA), 3,N4-ethenocytosine (eC). In this project, we will study a new aspect of nitric oxide’s cellular role in
inflammation and cancer: the inhibitory effect of NO on the AlkB family DNA repair enzymes. The AlkB proteins,
a group of Fe(II)/α-ketoglutarate-dependent dioxygenases, have been established to repair DNA alkyl lesions by
a direct reversal mechanism. Different homologs of AlkB exist in eukaryotic and prokaryotic species; nine such
homologs exist in mammalian cells (ABH1-8 and FTO). In humans, ABH2 and ABH3 have been identified as
DNA repair enzyme and constitute the most effective cellular defense against DNA adducts. In the preliminary
study, we have shown that NO has strong inhibitory effect on AlkB, ABH2 and ABH3. Electron paramagnetic
resonance (EPR) spectroscopic studies also showed NO binds to the Fe(II) ion in the catalytic center of AlkB,
thus inhibiting the catalytic O2 binding and abolishing the repair activity of AlkB. The central hypothesis of this
project is that NO delivers a “two-fold” damage to the cell by not only inducing alkyl DNA damages but also
suppressing the AlkB family DNA repair enzymes. The focus of this project is to study the relationship between
DNA repair and NO inhibition at molecular level both in vitro and in cell. We will use the three aims to
demonstrate this goal. In Aim 1, we will chemically synthesize DNA oligonucleotides containing specific
alkylated bases at defined sites, and isolate the repair enzymes. And then biochemically evaluate the repair of
alkyl-DNA lesions in vitro and determine the kinetic parameters of those repair and inhibitory reactions. In Aim
2, we will test nitric oxide’s inhibitory effect on replication efficiency and mutagenicity of DNA adducts in E. coli
cells. By using lesions placed at the exact known sites, we calculate the in cell kinetics of lesion bypass by
polymerases and lesion-induced mutation under conditions whereby the repair and inhibition capacity are
systematically varied. In Aim 3, we will characterize the NO-AlkB adduct by EPR spectroscopy and prepare
small molecule model complexes for NO-AlkB reactivity studies. The knowledge gained from those experiments
will help us understand the molecular and cellular mechanisms of NO inhibition on DNA repair and provide
insights for developing new strategy to prevent and overcome the cellular damage and tumorigenesis. Overall,
these studies will characterize a role of nitric oxide in the pathological processes of inflammation and cancer.
Once again, DNA damage is a primary initiator of many diseases and completion of the proposed studies will
have direct relevance to human health.
摘要
一氧化氮(-NO)是炎症过程中过量产生的一种信号分子,据报道可诱导
破坏细胞膜并导致烷化DNA加合物的积累,如1,N6-乙烯腺嘌呤
(EA),3,N4-乙胞嘧啶(EC)。在这个项目中,我们将研究一氧化氮在细胞中作用的一个新方面
炎症与癌症:-NO对AlkB家族dna修复酶的抑制作用。AlkB蛋白,
已经建立了一组依赖Fe(II)/α-酮戊二酸的双加氧酶,用于修复DNA烷基损伤
一种直接反转机制。AlkB的不同同源物存在于真核和原核物种中;
哺乳动物细胞(ABH1-8和FTO)中存在同源基因。在人类中,ABH2和ABH3已被鉴定为
DNA修复酶,并构成对DNA加合物最有效的细胞防御。在预赛中
研究表明,-NO对碱性磷酸酶B、ABH2和ABH3均有较强的抑制作用。电子顺磁
共振光谱研究还表明,NO与AlkB催化中心的Fe(II)离子结合,
从而抑制催化O2结合,取消AlkB的修复活性。这一点的中心假设是
项目是,-NO不仅通过诱导烷基dna损伤,而且还通过诱导
抑制AlkB家族DNA修复酶。本课题的研究重点是研究二者之间的关系。
DNA修复和在体外和细胞内均不受分子水平的抑制。我们将利用这三个目标来
演示这一目标。在目标1中,我们将化学合成含有特定基因的DNA寡核苷酸。
在指定的位点上烷化碱基,并分离修复酶。然后用生化方法评估修复情况
并测定这些修复和抑制反应的动力学参数。在AIM
2、检测一氧化氮对DNA加合物在大肠杆菌中复制效率和致突变性的抑制作用
细胞。通过使用放置在确切已知位置的病变,我们计算了病变旁路的细胞内动力学。
聚合酶和损伤诱导的突变,其中修复和抑制能力是
系统地变化的。在目标3中,我们将通过EPR光谱表征NO-AlkB加合物,并制备
用于NO-AlkB反应性研究的小分子模型络合物。从这些实验中获得的知识
将有助于我们了解NO抑制DNA修复的分子和细胞机制,并提供
对开发预防和克服细胞损伤和肿瘤发生的新策略的见解。总的来说,
这些研究将确定一氧化氮在炎症和癌症病理过程中的作用。
再一次,DNA损伤是许多疾病的主要诱因,完成拟议的研究将
与人类健康有直接关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deyu Li其他文献
Deyu Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deyu Li', 18)}}的其他基金
Mapping Brain Activity with High Spatiotemporal Resolution using Graphene Probes
使用石墨烯探针以高时空分辨率绘制大脑活动图
- 批准号:
10244939 - 财政年份:2017
- 资助金额:
$ 41.1万 - 项目类别:
Exploring synaptic remodeling with graphene optoelectronic probes
用石墨烯光电探针探索突触重塑
- 批准号:
9234603 - 财政年份:2016
- 资助金额:
$ 41.1万 - 项目类别:
Exploring synaptic remodeling with graphene optoelectronic probes
用石墨烯光电探针探索突触重塑
- 批准号:
9025171 - 财政年份:2016
- 资助金额:
$ 41.1万 - 项目类别:
Imaging synapse formation using novel microfluidic platforms
使用新型微流体平台对突触形成进行成像
- 批准号:
8094187 - 财政年份:2011
- 资助金额:
$ 41.1万 - 项目类别:
Imaging synapse formation using novel microfluidic platforms
使用新型微流体平台对突触形成进行成像
- 批准号:
8306755 - 财政年份:2011
- 资助金额:
$ 41.1万 - 项目类别:
相似海外基金
HNDS-R: Connectivity, Inclusiveness, and the Permeability of Basic Science
HNDS-R:基础科学的连通性、包容性和渗透性
- 批准号:
2318404 - 财政年份:2023
- 资助金额:
$ 41.1万 - 项目类别:
Standard Grant
Advancing the basic science of membrane permeability in macrocyclic peptides
推进大环肽膜渗透性的基础科学
- 批准号:
10552484 - 财政年份:2023
- 资助金额:
$ 41.1万 - 项目类别:
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
- 批准号:
10576701 - 财政年份:2023
- 资助金额:
$ 41.1万 - 项目类别:
Bringing together communities and basic science researchers to build stronger relationships
将社区和基础科学研究人员聚集在一起,建立更牢固的关系
- 批准号:
480914 - 财政年份:2023
- 资助金额:
$ 41.1万 - 项目类别:
Miscellaneous Programs
“L-form” bacteria: basic science, antibiotics, evolution and biotechnology
L 型细菌:基础科学、抗生素、进化和生物技术
- 批准号:
FL210100071 - 财政年份:2022
- 资助金额:
$ 41.1万 - 项目类别:
Australian Laureate Fellowships
Coordinating and Data Management Center for Translational and Basic Science Research in Early Lesions
早期病变转化和基础科学研究协调和数据管理中心
- 批准号:
10517004 - 财政年份:2022
- 资助金额:
$ 41.1万 - 项目类别:
Developing science communication on large scale basic science represented by accelerator science
发展以加速器科学为代表的大规模基础科学科学传播
- 批准号:
22K02974 - 财政年份:2022
- 资助金额:
$ 41.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic Science Core - Biosafety & Biocontainment Core (BBC)
基础科学核心 - 生物安全
- 批准号:
10431468 - 财政年份:2022
- 资助金额:
$ 41.1万 - 项目类别:














{{item.name}}会员




