Non-obtrusive Gait & Fall Monitoring

步态不突兀

基本信息

  • 批准号:
    8053612
  • 负责人:
  • 金额:
    $ 11.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-30 至 2012-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Falls among the elderly, one of the most common reasons requiring medical intervention and a contributing factor in 40% of nursing home admissions, are a major health problem. Several studies have identified quantifiable gait markers that appear to distinguish between elderly "fallers" and non-fallers. These studies have relied on data acquired in gait-laboratories. Extending gait assessment capability, and falls detection, into the home could provide valuable before-the-fact information on gait weakness evolution, which in turn could be used to assess the efficiency of counter measures. Current mobile gait analysis techniques are insufficient because they rely on compliance or are too intrusive. The development of a new gait assessment and falls monitor is proposed. The device is passive and obtains gait data from sensing floor vibrations as well as a minimally invasive wireless device, precluding the need to walk on special surfaces or be observed by cameras. This study's principal aim is to validate the device's performance through a comparison with accepted gait assessment techniques at the Physical Medicine and Rehabilitation Gait lab at the University of Virginia Health System PUBLIC HEALTH RELEVANCE: An estimated 20% - 40% of community-dwelling elderly fall at least once a year 2 and this rate increases for nursing home residents. Fall-related injuries are among the most common reasons requiring medical intervention and are a contributing factor in 40% of nursing home admissions. The cost of falls to the national economy is significant. In 1994 the total cost due to falls was estimated to be $20.2 billion. This number is expected to climb to $32.2 billion by 2020. One suggestion for reducing the number of falls has been the creation of a fall risk assessment for institutional residents, an important component of which is gait assessment. In view of the results obtained during the Phase I effort, it appears that the floor sensor system may be able to answer a well defined need for which there is presently no other solution that promises to be as readily implementable and for which the market potential is significant.
描述(由申请人提供):老年人中的福尔斯是需要医疗干预的最常见原因之一,也是40%的疗养院入院的一个促成因素,是一个主要的健康问题。几项研究已经确定了可量化的步态标记,似乎可以区分老年人“跌倒者”和非跌倒者。这些研究依赖于步态实验室获得的数据。将步态评估能力和福尔斯检测扩展到家庭中可以提供关于步态弱点演变的有价值的事前信息,这反过来可以用于评估对抗措施的效率。目前的移动的步态分析技术是不够的,因为它们依赖于顺应性或过于侵入。提出了一种新的步态评估和福尔斯监测的发展。该设备是被动的,通过感应地板振动以及微创无线设备获得步态数据,无需在特殊表面上行走或通过摄像头观察。这项研究的主要目的是通过与弗吉尼亚大学健康系统物理医学和康复步态实验室接受的步态评估技术进行比较来验证该设备的性能 公共卫生相关性:据估计,20% - 40%的社区老年人每年至少跌倒一次,而养老院居民的跌倒率则有所上升。跌倒相关的伤害是需要医疗干预的最常见原因之一,也是40%的疗养院入院的原因之一。福尔斯对国民经济的影响是巨大的。1994年,由于福尔斯下降造成的总损失估计为202亿美元。预计到2020年,这一数字将攀升至322亿美元。减少福尔斯数量的一个建议是为机构居民建立跌倒风险评估,其中一个重要组成部分是步态评估。考虑到在第一阶段工作期间获得的结果,似乎地板传感器系统能够满足明确定义的需求,对于该需求,目前没有其他解决方案可以承诺是容易实现的,并且对于该需求,市场潜力是显著的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARTIN Carl BARUCH其他文献

MARTIN Carl BARUCH的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARTIN Carl BARUCH', 18)}}的其他基金

Home Gait Assessment System
家庭步态评估系统
  • 批准号:
    8517923
  • 财政年份:
    2010
  • 资助金额:
    $ 11.4万
  • 项目类别:
Non-obtrusive Gait & Fall Monitoring
步态不突兀
  • 批准号:
    7800032
  • 财政年份:
    2010
  • 资助金额:
    $ 11.4万
  • 项目类别:
Continuous BP monitor for dialysis applications
用于透析应用的连续血压监测仪
  • 批准号:
    7271794
  • 财政年份:
    2007
  • 资助金额:
    $ 11.4万
  • 项目类别:
Floor Monitor for Gait Assessment and Falls Detection
用于步态评估和跌倒检测的地板监视器
  • 批准号:
    6742741
  • 财政年份:
    2004
  • 资助金额:
    $ 11.4万
  • 项目类别:
Non-invasive cardiopulmonary monitor for mice
小鼠无创心肺监护仪
  • 批准号:
    6741565
  • 财政年份:
    2004
  • 资助金额:
    $ 11.4万
  • 项目类别:
Non-invasive cardio-pulmonary monitor for mice
小鼠无创心肺监护仪
  • 批准号:
    7155568
  • 财政年份:
    2003
  • 资助金额:
    $ 11.4万
  • 项目类别:
Non-invasive cardio-pulmonary monitor for mice
小鼠无创心肺监护仪
  • 批准号:
    7286297
  • 财政年份:
    2003
  • 资助金额:
    $ 11.4万
  • 项目类别:
FIBER-OPTIC-BASED BLOOD PRESSURE/PULSUS PARADOXUS SENSOR
基于光纤的血压/奇异脉传感器
  • 批准号:
    6210466
  • 财政年份:
    2000
  • 资助金额:
    $ 11.4万
  • 项目类别:
Ultrasonic Method for Testing Anti Sickling Agents
超声波法测试抗镰状化剂
  • 批准号:
    6527580
  • 财政年份:
    1999
  • 资助金额:
    $ 11.4万
  • 项目类别:
ULTRASONIC METHOD FOR TESTING ANTI SICKLING AGENTS
测试抗镰状剂的超声波方法
  • 批准号:
    2785832
  • 财政年份:
    1999
  • 资助金额:
    $ 11.4万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了