Kinetochore Specification and Function

着丝粒规格及功能

基本信息

  • 批准号:
    8063517
  • 负责人:
  • 金额:
    $ 35.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-05-01 至 2014-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The replicated genome must be accurately distributed to daughter cells during cell division. Subtle errors in this process lead to birth defects and likely contribute to the genesis of cancer. Severe defects in genome distribution lead to cell lethality and their induction using drugs targeting microtubules, the protein polymers that are a central component of the genome distribution machinery, is a widely used strategy in cancer chemotherapy. A major player in genome distribution during cell division is the kinetochore, a proteinaceous machine built on the centromere regions of mitotic chromosomes to generate a dynamic interface with spindle microtubules. The mechanical properties of kinetochore-microtubule interactions direct chromosome alignment and segregation on the spindle. The mechanics at this interface are tightly integrated with signaling pathways that detect and correct errors in the geometry of chromosome-spindle microtubule attachments and prevent cell cycle progression until all chromosomes are properly connected. These regulatory pathways are central to accurate inheritance of the genome as they ensure that replicated chromosomes are precisely divided into the two daughter cells. The ubiquitously conserved KNL-1/Mis12 complex/Ndc80 complex (KMN) protein network is proposed to play a central role at the kinetochore-microtubule interface. This protein network provides the core microtubule-binding activity of the kinetochore, primarily through a microtubule- binding surface on the 4-subunit Ndc80 complex. The KMN network additionally plays an important role in the spindle checkpoint-the kinetochore-anchored regulatory pathway that generates a "wait anaphase' signal until all of the chromosomes in a cell are correctly attached to the spindle. The proposed work will focus on defining the mechanisms by which the KNL-1 subunit of the KMN network functions as a scaffold coordinating outer kinetochore assembly, microtubule attachment, and checkpoint signaling. The mechanism of microtubule binding by the KMN network and the functional interactions between the two distinct microtubule-binding activities in this protein set, which reside in the Ndc80 complex and in KNL-1, will also be analyzed using a combination of structural and biochemical approaches. In cells, kinetochore-bound spindle microtubules are significantly stabilized. To determine the extent to which the KMN network contributes to this property, the regulation of microtubule polymerization dynamics by the KMN network will be investigated in vitro. The KMN network is closely associated with, and in some cases directly contacts, kinetochore-localized kinases and phosphatases that are implicated in accurate chromosome segregation. The functions of this localized phosphate flux anchored to the KMN network in chromosome segregation and checkpoint signaling will also be addressed. PUBLIC HEALTH RELEVANCE: Errors in distributing the genome during cell division lead to birth defects and contribute to the genesis of cancer. The cellular machinery used for genome distribution is a common target in cancer chemotherapy. This project will focus on understanding the mechanisms that ensure accurate distribution of the genome to daughter cells during cell division. Elucidation of these mechanisms will contribute to our understanding of the development and progression of cancer and provide new avenues for therapeutic development.
描述(由申请人提供):复制的基因组必须在细胞分裂期间准确分布到子细胞。这个过程中的细微错误会导致出生缺陷,并可能导致癌症的发生。基因组分布中的严重缺陷导致细胞致死性,并且使用靶向微管的药物对其进行诱导,微管是基因组分布机制的核心组分的蛋白质聚合物,是癌症化疗中广泛使用的策略。在细胞分裂过程中,基因组分布的一个主要参与者是动粒,一种建立在有丝分裂染色体的着丝粒区域上的蛋白质机器,用于与纺锤体微管产生动态界面。着丝粒-微管相互作用的机械性质指导纺锤体上的染色体排列和分离。这个界面的机制与信号通路紧密结合,这些信号通路检测和纠正染色体-纺锤体微管连接的几何错误,并阻止细胞周期进展,直到所有染色体正确连接。这些调控途径是基因组准确遗传的核心,因为它们确保复制的染色体精确地分为两个子细胞。普遍保守的KNL-1/Mis 12复合物/Ndc 80复合物(KMN)蛋白网络被认为在着丝粒-微管界面起着核心作用。该蛋白质网络主要通过4-亚基Ndc 80复合物上的微管结合表面提供动粒的核心微管结合活性。此外,KMN网络在纺锤体检查点中起着重要作用,纺锤体检查点是一种激动剂锚定的调节途径,它产生一个“等待后期”信号,直到细胞中的所有染色体都正确地附着在纺锤体上。拟议的工作将集中于定义KMN网络的KNL-1亚基作为协调外动粒组装、微管附着和检查点信号传导的支架的机制。微管结合的KMN网络的机制和两个不同的微管结合活性之间的功能相互作用,在这个蛋白质组,这驻留在Ndc 80复合物和KNL-1,也将使用结构和生化方法的组合进行分析。在细胞中,结合有着丝粒的纺锤体微管被显著稳定。为了确定在何种程度上的KMN网络有助于这一属性,微管聚合动力学的调控KMN网络将在体外进行研究。KMN网络与涉及精确染色体分离的着丝粒定位激酶和磷酸酶密切相关,并且在某些情况下直接接触。还将讨论锚定到KMN网络的这种局部磷酸盐通量在染色体分离和检查点信号传导中的功能。 公共卫生相关性:细胞分裂期间基因组分布错误导致出生缺陷,并导致癌症的发生。用于基因组分布的细胞机器是癌症化疗中的常见靶标。该项目将侧重于了解在细胞分裂过程中确保基因组准确分布到子细胞的机制。阐明这些机制将有助于我们理解癌症的发展和进展,并为治疗开发提供新的途径。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arshad Desai其他文献

Arshad Desai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arshad Desai', 18)}}的其他基金

Kinetochore Assembly and Regulation
着丝粒组装和调控
  • 批准号:
    10717202
  • 财政年份:
    2023
  • 资助金额:
    $ 35.53万
  • 项目类别:
IDENTIFICATION OF KINETOCHORE INTERACTING PROTEINS (KNL-1/KNL-3/KNL-2)
动粒相互作用蛋白的鉴定 (KNL-1/KNL-3/KNL-2)
  • 批准号:
    8171385
  • 财政年份:
    2010
  • 资助金额:
    $ 35.53万
  • 项目类别:
Kinetochore Specification and Function
着丝粒规格及功能
  • 批准号:
    8000170
  • 财政年份:
    2010
  • 资助金额:
    $ 35.53万
  • 项目类别:
IDENTIFICATION OF INTERACTING PROTEINS OF SPINDLY
Spindly 相互作用蛋白的鉴定
  • 批准号:
    8171402
  • 财政年份:
    2010
  • 资助金额:
    $ 35.53万
  • 项目类别:
IDENTIFICATION OF PHOSPHORYLATION SITES AURORA B
磷酸化位点 AURORA B 的鉴定
  • 批准号:
    8171401
  • 财政年份:
    2010
  • 资助金额:
    $ 35.53万
  • 项目类别:
ANALYSIS OF CEN DNA-MICROTUBULE ATTACHMENT IN VITRO IN BUDDING YEAST
芽殖酵母 CEN DNA-微管附着的体外分析
  • 批准号:
    7602213
  • 财政年份:
    2007
  • 资助金额:
    $ 35.53万
  • 项目类别:
Kinetochore Specification and Function
着丝粒规格及功能
  • 批准号:
    9214331
  • 财政年份:
    2005
  • 资助金额:
    $ 35.53万
  • 项目类别:
Kinetochore Specification and Function
着丝粒规格及功能
  • 批准号:
    10609070
  • 财政年份:
    2005
  • 资助金额:
    $ 35.53万
  • 项目类别:
Kinetochore Specification and Function
着丝粒规格及功能
  • 批准号:
    10446328
  • 财政年份:
    2005
  • 资助金额:
    $ 35.53万
  • 项目类别:
Kinetochore Specification and Function
着丝粒规格及功能
  • 批准号:
    6910352
  • 财政年份:
    2005
  • 资助金额:
    $ 35.53万
  • 项目类别:

相似海外基金

Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
  • 批准号:
    502556
  • 财政年份:
    2024
  • 资助金额:
    $ 35.53万
  • 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
  • 批准号:
    10659303
  • 财政年份:
    2023
  • 资助金额:
    $ 35.53万
  • 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
  • 批准号:
    10674405
  • 财政年份:
    2023
  • 资助金额:
    $ 35.53万
  • 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
  • 批准号:
    10758772
  • 财政年份:
    2023
  • 资助金额:
    $ 35.53万
  • 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
  • 批准号:
    10676499
  • 财政年份:
    2023
  • 资助金额:
    $ 35.53万
  • 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
  • 批准号:
    2748611
  • 财政年份:
    2022
  • 资助金额:
    $ 35.53万
  • 项目类别:
    Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
  • 批准号:
    10532032
  • 财政年份:
    2022
  • 资助金额:
    $ 35.53万
  • 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
  • 批准号:
    22K05630
  • 财政年份:
    2022
  • 资助金额:
    $ 35.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
  • 批准号:
    10525070
  • 财政年份:
    2022
  • 资助金额:
    $ 35.53万
  • 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
  • 批准号:
    10689017
  • 财政年份:
    2022
  • 资助金额:
    $ 35.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了