Functions and Mechanisms of M. Tuberculosis S/T Kinases
结核分枝杆菌S/T激酶的功能和机制
基本信息
- 批准号:8143265
- 负责人:
- 金额:$ 30.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-03-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:AnabolismAntibioticsAreaAwardBacterial InfectionsBasic ScienceBiochemicalBiologicalBiological ProcessBiotechnologyCell WallCell physiologyCellsCollaborationsCommunicable DiseasesDiabetes MellitusDimerizationDiseaseDrug Delivery SystemsDrug resistanceEukaryotaFamilyFamily memberFire - disastersGeneticGoalsGrantGrowth and Development functionHealthHumanImageInflammationKnowledgeLifeLigandsMapsMediatingMedicalMedicineMetabolismMethodsMolecularMolecular BiologyMolecular MedicineMycobacterium tuberculosisNaturePathogenesisPatternPeptidoglycanPharmacologic SubstancePhosphoric Monoester HydrolasesPhosphorylationPhosphorylation SitePhosphotransferasesPhysiologicalPhysiologyPlayPopulationProtein KinaseProteinsRegulationResearchResistanceRoleSignal TransductionSingaporeStagingStructureSubstrate SpecificitySwitzerlandSystemTestingTuberculosisVirulenceWorkbasecancer paindrug developmentenzyme mechanismin vivoinhibitor/antagonistkillingsmembernovel strategiesnovel therapeuticspathogenpathogenic bacteriapre-clinicalprogramsreceptorresistant strainsensortool
项目摘要
DESCRIPTION (provided by applicant): The long-term goal of this research program is to understand the functions of Ser/Thr protein kinases (STPKs) in the pathogenic bacterium Mycobacterium tuberculosis (Mtb). Mtb causes tuberculosis (TB), and it infects one third of the world's population. TB kills ~2 million people annually, and drug resistant strains are emerging rapidly. To target the Mtb STPKs with new therapeutics, basic research is needed to define the specific biological functions and regulatory mechanisms of these enzymes. In the first grant period, we pioneered structural studies of the Mtb STPKs and established the current paradigm that dimerization and phosphorylation mediated by two structural interfaces activate bacterial STPKs. We also developed novel approaches to identify STPK substrates in Mtb. These studies afford the opportunity to focus biochemical, biophysical, structural and genetic methods to establish new principles of bacterial STPK signaling. The breadth and novelty of approaches are strengths of this program. This research has four specific aims: 1. Define the basis for signaling through Mtb transmembrane receptor kinases. 2. Discover networks of kinase cross-phosphorylation and regulation. 3. Discover candidate protein substrates of Mtb STPKs. 4. Determine how the STPKs regulate the Mtb flippase for peptidoglycan precursors. Our preliminary studies established the conceptual framework and the feasibility of these aims. We propose several groundbreaking studies, including spatial and temporal mapping of kinase localization, dimerization and activation in vivo. We will test the hypotheses that dimerization activates bacterial STPKs, that the complete Mtb kinome forms a hierarchical network, that the STPKs regulate much of Mtb physiology, and that PknB senses cell wall fragments and regulates peptidoglycan biosynthesis. Because of the central roles of kinase signaling in cellular physiology, the increasing focus on STPKs as pharmaceutical targets, and the worldwide health impact of TB, our proposed studies will have high significance for molecular biology and medicine. PUBLIC HEALTH RELEVANCE: By discovering the mechanisms of environmental sensing underlying tuberculosis (TB) and other bacterial infections, this program will connect directly to ongoing efforts to develop new antibiotics against major life-threatening diseases. Human cells also signal through similar molecular sensors, called protein kinases, and these kinases are important targets for drugs to treat diseases including diabetes, inflammation, pain and cancer. Consequently, this program has broad and direct implications for human health.
描述(申请人提供):这项研究计划的长期目标是了解结核分枝杆菌(Mtb)致病菌中丝氨酸/苏氨酸蛋白激酶(STPKs)的功能。结核分枝杆菌引起结核病,它感染了世界三分之一的人口。结核病每年导致约200万人死亡,耐药菌株正在迅速出现。为了用新的治疗方法来靶向Mtb STPKs,需要进行基础研究来确定这些酶的特定生物学功能和调节机制。在第一个资助期间,我们开创了Mtb STPKs的结构研究,并建立了目前的范式,即由两个结构界面介导的二聚化和磷酸化激活细菌STPKs。我们还开发了新的方法来鉴定结核分枝杆菌中的STPK底物。这些研究提供了集中生化、生物物理、结构和遗传方法来建立细菌STPK信号转导的新原理的机会。方法的广度和新颖性是该项目的优势所在。本研究有四个具体目的:1.明确Mtb跨膜受体激酶信号转导的基础。2.发现激酶交叉磷酸化和调节的网络。3.发现Mtb STPKs的候选蛋白底物。4.确定STPKs是如何调节Mtb翻转酶的肽聚糖前体的。我们的初步研究确立了这些目标的概念框架和可行性。我们提出了几项开创性的研究,包括在体内定位、二聚化和激活的激酶的空间和时间图谱。我们将测试以下假设:二聚化激活细菌STPKs,完整的Mtb基因组形成一个分层网络,STPKs调节Mtb生理的大部分,PKnB感知细胞壁碎片并调节肽聚糖的生物合成。由于激酶信号在细胞生理中的核心作用,STPKs作为药物靶点的日益受到关注,以及结核病对全球健康的影响,我们提出的研究将对分子生物学和医学具有很高的意义。公共卫生相关性:通过发现结核病(TB)和其他细菌感染背后的环境感知机制,该计划将直接与正在进行的针对重大威胁生命的疾病开发新抗生素的努力相联系。人类细胞也通过类似的分子传感器发出信号,称为蛋白激酶,这些激酶是治疗糖尿病、炎症、疼痛和癌症等疾病的药物的重要靶点。因此,这一计划对人类健康具有广泛和直接的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
THOMAS C ALBER其他文献
THOMAS C ALBER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('THOMAS C ALBER', 18)}}的其他基金
Vulnerabilities in Mycobacterial Cell-Wall Biogenesis
分枝杆菌细胞壁生物发生中的脆弱性
- 批准号:
8353014 - 财政年份:2012
- 资助金额:
$ 30.51万 - 项目类别:
ROLE OF PROTEIN SOFT SPOTS IN LIGAND RECOGNITION AND INHIBITOR DESIGN
蛋白质软点在配体识别和抑制剂设计中的作用
- 批准号:
8363609 - 财政年份:2011
- 资助金额:
$ 30.51万 - 项目类别:
ROLE OF PROTEIN SOFT SPOTS IN LIGAND RECOGNITION AND INHIBITOR DESIGN
蛋白质软点在配体识别和抑制剂设计中的作用
- 批准号:
8170537 - 财政年份:2010
- 资助金额:
$ 30.51万 - 项目类别:
ROLE OF PROTEIN SOFT SPOTS IN LIGAND RECOGNITION AND INHIBITOR DESIGN
蛋白质软点在配体识别和抑制剂设计中的作用
- 批准号:
7955506 - 财政年份:2009
- 资助金额:
$ 30.51万 - 项目类别:
ROLE OF PROTEIN SOFT SPOTS IN LIGAND RECOGNITION AND INHIBITOR DESIGN
蛋白质软点在配体识别和抑制剂设计中的作用
- 批准号:
7723520 - 财政年份:2008
- 资助金额:
$ 30.51万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 30.51万 - 项目类别:
Studentship
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 30.51万 - 项目类别:
Research Grant
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 30.51万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 30.51万 - 项目类别:
ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 30.51万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 30.51万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 30.51万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 30.51万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 30.51万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 30.51万 - 项目类别:
Studentship