pH-Triggered Membrane Insertion of Proteins
pH 触发的蛋白质膜插入
基本信息
- 批准号:8183855
- 负责人:
- 金额:$ 38.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:ApoptoticBacterial ToxinsBiological AssayCatalytic DomainCell physiologyCellsCellular biologyChargeCodeCollaborationsColorComplementComplexComputersCysteineDataDiphtheria ToxinDiseaseElectrostaticsEndosomesEnvironmentEquilibriumExperimental DesignsFamilyFluorescenceFluorescence Resonance Energy TransferFoundationsFree EnergyFundingGoalsHeadHistidineHydrophobic InteractionsKineticsLabelLinkLipid BilayersLipidsMeasurementMediatingMedicineMembraneMembrane ProteinsMethodologyMethodsModelingMolecularMolecular ConformationMutagenesisNaturePathway interactionsPhysiologicalProcessPropertyProteinsResearchResolutionRoentgen RaysRoleSchemeSeriesSignal TransductionSiteSolutionsStructureSupervisionTailTechniquesTestingTetanusThermodynamicsToxinWaterWorkaqueousaspartylglutamatebotulinumcancer therapycellular targetingcolicincollegeinnovationinsightinterfacialmedical schoolsmembrane modelmolecular dynamicsmutantprotein foldingprotein structureprotonationresearch studyresponsesimulationstop flow techniquetargeted deliverytool
项目摘要
DESCRIPTION (provided by applicant): This project is focused on deciphering the molecular mechanism of pH-dependent refolding and membrane insertion of the diphtheria toxin T-domain (DTT), which is considered to be a paradigm for cell entry of other toxins (e.g., tetanus and botulinum) and has a potential for targeted delivery of anti-cancer therapies. The pH-triggered insertion of DTT will also reveal general physicochemical principles underlying membrane protein assembly and signalyng on membrane interfaces. This first competing renewal of the project will capitalize on our progress in identifying key intermediate states along the insertion pathway, in establishing the concept of conformational switching for DTT action and in developing new methodologies for structural, kinetic and thermodynamic characterization of membrane protein refolding/insertion. The innovation of this proposal resides in the unique way that molecular dynamics (MD) simulations and sophisticated spectroscopic experiments will be brought together in order to understand molecular mechanisms which will bring clarity to a complex field. MD simulations will be used for (a) building atomic models consistent with low resolution spectroscopic data, and (b) guiding the experimental design to further verify them. Site-specific labeling of single-cysteine mutants and a battery of spectroscopic approaches (including FCS, fluorescence lifetime quenching, FRET, stopped-flow kinetic measurements) will be utilized to test the interface-directed refolding/insertion hypothesis, which assigns a special role to the bilayer interfacial region in modulating transmembrane insertion by assisting the formation of key intermediate states, shifting the balance of electrostatic and hydrophobic interactions and altering protonation properties of titratable residues. The nature of the conformational switching resulting in refolding, insertion and translocation transitions of DTT will be established through mutagenesis of His, Asp and Glu residues, guided by Thermodynamic Integration calculations. Various DTT mutants will be used to ascertain whether protonation of histidines assists in the unfolding of the protein in solution and promotes formation of a previously identified insertion-competent intermediate on the membrane interface, through electrostatic interactions with anionic lipids, while protonation of acidic residues enables transmembrane insertion. To gain insights into the pH-triggered membrane action of DTT, thus establishing the general physicochemical principles of membrane-protein interactions, we will pursue the following goals: (1) determine molecular details of the structural organization of key intermediate and final inserted states; (2) determine the free energy profile of transitions along the insertion pathway and determine how the properties of the bilayer modulate structural, thermodynamic and kinetic parameters of the DTT insertion; and (3) identify key residues responsible for pH-triggered functional conformational switching.
PUBLIC HEALTH RELEVANCE: The project deals with the mechanism of bacterial toxin insertion into and translocation across the membranes, which are fundamental unanswered questions in cell biology. It also relates to (a) potential targeted cellular delivery of molecular therapy and (b) deciphering the membrane protein folding and stability problem, related to our understanding of molecular mechanisms of misfolding-associated diseases.
描述(由申请人提供):该项目专注于破解白喉毒素t结构域(DTT)的ph依赖性重折叠和膜插入的分子机制,这被认为是其他毒素(例如破伤风和肉毒杆菌)进入细胞的范例,并具有靶向递送抗癌治疗的潜力。ph触发的DTT插入也将揭示膜蛋白组装和膜界面信号传导的一般物理化学原理。该项目的第一次竞争性更新将利用我们在确定插入途径的关键中间状态,建立DTT作用的构象转换概念以及开发膜蛋白重折叠/插入的结构,动力学和热力学表征的新方法方面的进展。该提案的创新之处在于将分子动力学(MD)模拟和复杂的光谱实验结合在一起的独特方式,以了解分子机制,从而为复杂的领域带来清晰度。MD模拟将用于(a)建立与低分辨率光谱数据一致的原子模型,以及(b)指导实验设计以进一步验证它们。单半胱氨酸突变体的位点特异性标记和一系列光谱方法(包括FCS,荧光寿命猝灭,FRET,停止流动动力学测量)将用于测试界面定向重折叠/插入假说,该假说通过协助关键中间态的形成,在调节跨膜插入中赋予双层界面区域特殊作用。改变静电和疏水相互作用的平衡,改变可滴定残基的质子化性质。在热力学积分计算的指导下,将通过His、Asp和Glu残基的突变来确定导致DTT重折叠、插入和易位转变的构象切换的性质。各种DTT突变体将用于确定组氨酸的质子化是否有助于蛋白质在溶液中展开,并通过与阴离子脂质的静电相互作用促进在膜界面上形成先前确定的插入能力中间体,而酸性残基的质子化是否能够跨膜插入。为了深入了解ph触发DTT的膜作用,从而建立膜-蛋白相互作用的一般物理化学原理,我们将追求以下目标:(1)确定关键中间和最终插入状态的结构组织的分子细节;(2)确定沿插入路径跃迁的自由能分布,确定双层性质如何调节DTT插入的结构、热力学和动力学参数;(3)确定ph触发功能构象转换的关键残基。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melanie J Cocco其他文献
Melanie J Cocco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melanie J Cocco', 18)}}的其他基金
Trapping membrane proteins with adjuvant-carrying amphipols for vaccine formulati
用携带佐剂的两性聚合物捕获膜蛋白用于疫苗配制
- 批准号:
8711230 - 财政年份:2011
- 资助金额:
$ 38.01万 - 项目类别:
Trapping membrane proteins with adjuvant-carrying amphipols for vaccine formulati
用携带佐剂的两性聚合物捕获膜蛋白用于疫苗配制
- 批准号:
8188329 - 财政年份:2011
- 资助金额:
$ 38.01万 - 项目类别:
Trapping membrane proteins with adjuvant-carrying amphipols for vaccine formulati
用携带佐剂的两性聚合物捕获膜蛋白用于疫苗配制
- 批准号:
8324510 - 财政年份:2011
- 资助金额:
$ 38.01万 - 项目类别:
Trapping membrane proteins with adjuvant-carrying amphipols for vaccine formulati
用携带佐剂的两性聚合物捕获膜蛋白用于疫苗配制
- 批准号:
8521069 - 财政年份:2011
- 资助金额:
$ 38.01万 - 项目类别:
相似海外基金
All in the family: understanding a new class of bacterial toxins
全家人:了解一类新的细菌毒素
- 批准号:
DP230101148 - 财政年份:2023
- 资助金额:
$ 38.01万 - 项目类别:
Discovery Projects
Barrier functions of the sugary cell coat: Understanding how extracellular signalling proteins and bacterial toxins navigate the cell surface
糖细胞外壳的屏障功能:了解细胞外信号蛋白和细菌毒素如何在细胞表面导航
- 批准号:
2885385 - 财政年份:2023
- 资助金额:
$ 38.01万 - 项目类别:
Studentship
Determining the export mechanism of a widespread family of bacterial toxins
确定广泛存在的细菌毒素家族的输出机制
- 批准号:
574140-2022 - 财政年份:2022
- 资助金额:
$ 38.01万 - 项目类别:
University Undergraduate Student Research Awards
Determining the export mechanism of a widespread family of bacterial toxins
确定广泛存在的细菌毒素家族的输出机制
- 批准号:
575814-2022 - 财政年份:2022
- 资助金额:
$ 38.01万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Basic and clinical study on the role of GILT on pathogenicity of bacterial toxins
GILT对细菌毒素致病性作用的基础与临床研究
- 批准号:
22K08581 - 财政年份:2022
- 资助金额:
$ 38.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure and Function of Bacterial Toxins
细菌毒素的结构和功能
- 批准号:
RGPIN-2018-04626 - 财政年份:2022
- 资助金额:
$ 38.01万 - 项目类别:
Discovery Grants Program - Individual
Structure and biophysical analysis aided design of novel toxoid vaccines for a major class of bacterial toxins.
结构和生物物理分析有助于针对主要一类细菌毒素设计新型类毒素疫苗。
- 批准号:
nhmrc : 2003435 - 财政年份:2021
- 资助金额:
$ 38.01万 - 项目类别:
Ideas Grants
Determining the export mechanism of a widespread family of bacterial toxins
确定广泛存在的细菌毒素家族的输出机制
- 批准号:
571017-2021 - 财政年份:2021
- 资助金额:
$ 38.01万 - 项目类别:
University Undergraduate Student Research Awards
Structure and Function of Bacterial Toxins
细菌毒素的结构和功能
- 批准号:
RGPIN-2018-04626 - 财政年份:2021
- 资助金额:
$ 38.01万 - 项目类别:
Discovery Grants Program - Individual
Directed evolution of bacterial toxins to target oncogenic Ras GTPase variants
细菌毒素定向进化以靶向致癌 Ras GTP 酶变体
- 批准号:
466962 - 财政年份:2021
- 资助金额:
$ 38.01万 - 项目类别:
Studentship Programs