TRANSMEMBRANE TOPOLOGY PREDICTION USING DYNAMIC BAYESIAN NETWORKS
使用动态贝叶斯网络进行跨膜拓扑预测
基本信息
- 批准号:8171276
- 负责人:
- 金额:$ 3.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:Cleaved cellComputer Retrieval of Information on Scientific Projects DatabaseComputing MethodologiesDatabasesEnzymesFundingGrantInstitutionIntegral Membrane ProteinMembraneMethodsN-terminalOrganismPeptide Signal SequencesPharmaceutical PreparationsProcessProteinsResearchResearch PersonnelResourcesSourceStructureUnited States National Institutes of HealthWorkYeastscomputer based statistical methodsinterestsignal peptidasetherapeutic targetthree dimensional structure
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
Transmembrane proteins are of particular interest to biologists because they are involved in a broad range of processes and functions and are often the targets of therapeutic drugs. Experimentally determining the 3D structure of a transmembrane protein is a difficult task, and few of the currently known tertiary structures are of transmembrane proteins, despite the fact that as many as one quarter of the proteins in a given organism are transmembrane proteins. Computational methods for predicting the basic topology of a transmembrane protein are therefore of great interest, and these methods must be able to distinguish between mature, membrane-spanning proteins and proteins which, when first synthesized, contain an N-terminal membrane-spanning signal peptide which is cleaved from the mature protein by the enzyme signal peptidase. In this work, we present Philius, a new computational approach that outperforms previous methods in detecting signal peptides and correctly predicting the topology of transmembrane proteins. Philius also supplies a set of confidence scores with each prediction. In addition, we have made predictions for over six million proteins in the Yeast Resource Center database and we have made these predictions publicly available.
该副本是利用众多研究子项目之一
由NIH/NCRR资助的中心赠款提供的资源。子弹和
调查员(PI)可能已经从其他NIH来源获得了主要资金,
因此可以在其他清晰的条目中代表。列出的机构是
对于中心,这不一定是调查员的机构。
跨膜蛋白对生物学家特别感兴趣,因为它们参与了广泛的过程和功能,并且通常是治疗药物的靶标。在实验上确定跨膜蛋白的3D结构是一项艰巨的任务,尽管当前有生物体中多达四分之一的蛋白质是跨膜蛋白,但当前已知的三级结构很少是跨膜蛋白。 因此,用于预测跨膜蛋白基本拓扑的计算方法引起了人们的极大兴趣,这些方法必须能够区分成熟的,跨膜蛋白质和蛋白质,当首次合成时,这些蛋白质和蛋白质首次合成时,含有N-末端膜跨膜信号肽,这些信号肽与enzeme signalseme Signalse signalse syzyseme cleace clea clea clea cleaseme offeptase syzyseme signalseme syzeme signalseme。在这项工作中,我们提出了Philius,这是一种新的计算方法,它在检测信号肽并正确预测跨膜蛋白的拓扑结构方面优于先前的方法。 Philius还为每个预测提供了一套置信度得分。此外,我们在酵母资源中心数据库中已经对超过600万个蛋白质做出了预测,我们已经公开提供了这些预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Noble其他文献
William Noble的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Noble', 18)}}的其他基金
ON USING SAMPLES OF KNOWN PROTEIN CONTENT TO ASSESS THE STATISTICAL CALIBRATION
关于使用已知蛋白质含量的样品来评估统计校准
- 批准号:
8365887 - 财政年份:2011
- 资助金额:
$ 3.71万 - 项目类别:
LEARNING SPARSE MODELS FOR A DYNAMIC BAYESIAN NETWORK CLASSIFIER OF PROTEIN SECO
学习蛋白质 SECO 动态贝叶斯网络分类器的稀疏模型
- 批准号:
8365898 - 财政年份:2011
- 资助金额:
$ 3.71万 - 项目类别:
A DYNAMIC BAYESIAN NETWORK FOR IDENTIFYING PROTEIN BINDING FOOTPRINTS FROM SINGL
一种用于识别单个蛋白质结合足迹的动态贝叶斯网络
- 批准号:
8365880 - 财政年份:2011
- 资助金额:
$ 3.71万 - 项目类别:
A UNIFIED MULTITASK ARCHITECTURE FOR PREDICTING LOCAL PROTEIN PROPERTIES
用于预测局部蛋白质特性的统一多任务架构
- 批准号:
8365897 - 财政年份:2011
- 资助金额:
$ 3.71万 - 项目类别:
COMPUTATIONAL CHARACTERIZATION OF HOMING ENDONUCLEASE BINDING SPECIFICITY
归巢核酸内切酶结合特异性的计算表征
- 批准号:
8365906 - 财政年份:2011
- 资助金额:
$ 3.71万 - 项目类别:
EFFICIENT MARGINALIZATION TO COMPUTE PROTEIN POSTERIOR PROBABILITIES FROM SHOTGU
通过 Shotgu 进行有效边缘化计算蛋白质后验概率
- 批准号:
8365888 - 财政年份:2011
- 资助金额:
$ 3.71万 - 项目类别:
PRECURSOR CHARGE STATE PREDICTION FOR ELECTRON TRANSFER DISSOCIATION TANDEM MASS
电子转移解离串联质量的前体电荷态预测
- 批准号:
8365872 - 财政年份:2011
- 资助金额:
$ 3.71万 - 项目类别:
SOFTWARE DISTRIBUTED BY THE NOBLE LAB, 2010-2011
NOBLE LAB 分发的软件,2010-2011 年
- 批准号:
8365904 - 财政年份:2011
- 资助金额:
$ 3.71万 - 项目类别:
相似海外基金
SINGLE CRYSTAL AND SOLUTION XAS STUDIES OF NON-COUPLED BINUCLEAR COPPER O2 ACTIV
非偶联双核铜O2活性的单晶和溶液XAS研究
- 批准号:
8170204 - 财政年份:2010
- 资助金额:
$ 3.71万 - 项目类别:
LARGE-SCALE PREDICTION OF PROTEIN-PROTEIN INTERACTIONS FROM STRUCTURE
从结构大规模预测蛋白质-蛋白质相互作用
- 批准号:
8171275 - 财政年份:2010
- 资助金额:
$ 3.71万 - 项目类别: