Observing auditory mechanics with pressure and motion measurements
通过压力和运动测量来观察听觉力学
基本信息
- 批准号:8105869
- 负责人:
- 金额:$ 34.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-03-01 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:AbbreviationsAcoustic NerveAcousticsAction PotentialsAirAnatomyAuditoryBasilar MembraneBrainCaliberClinicalCochleaCochlear ImplantsCochlear ductCochlear implant procedureComplementComplexCoupledCrystalline LensDevelopmentEarExternal auditory canalEyeFrequenciesGerbilsGlassHearingHistologyHybridsImageImplantIndividualInjection of therapeutic agentKnowledgeLaboratoriesLabyrinthLaser-Doppler VelocimetryLasersLeadLiquid substanceLocationMasksMeasurementMeasuresMechanicsMethodologyMethodsMonitorMotionNatureOrgan of CortiPatternPlant RootsPopulationProcessRodentScala TympaniSensorySeriesSideSignal TransductionSorting - Cell MovementSpeedStagingStapesSurfaceTechniquesTestingTissuesTympanic membraneVariantWorkauditory stimulusbasedesigndiscountexpectationextracellularimplantationin vivointerestmiddle earminiaturizenoveloperationplatinum electrodepressureremediationresearch studyresponseround windowsensorsoundtectorial membranetheoriestransmission processvibrationvoltage
项目摘要
DESCRIPTION (provided by applicant): Exploring Auditory Mechanics with Pressure and Motion Measurements. The series of experiments proposed here use pressure sensors and other special techniques developed in our lab, complemented by well-established methods like laser-doppler velocimetry, to explore auditory mechanics. The projects of the first four aims continue and extend our previous work on inner and middle ear mechanics. The final aim develops and evaluates a new method for deep cochlear implant insertion. Sound input causes a wave-pattern of sensory tissue motion within the inner ear that is conveyed to the auditory nerve, leading to hearing. This takes place within cochlear compartments having very limited experimental accessibility. Aims one and two of the studies proposed here will push into these barely accessible compartments with specialized micro-sensors. Aim one uses a further miniaturized micro-pressure sensor for in vivo measurements of scala media pressure. Aim two advances our lab's well- established scala tympani pressure measurements by combining them with cochlear microphonic measurements at the same location, within micrometers of the organ of Corti. Both aims are designed to test specific theoretical predictions in order to have a strong impact on the advancement of knowledge. Sound is transmitted by the middle ear with high fidelity even at frequencies where the eardrum has a complex, random-wavy response to sound. Recent theories employ the eardrum wave for sound transmission, and our aim three tests that prediction by changing the wave speed with stiffening agents, measuring the wave speed with a laser velocimeter and also monitoring sound transmission with intracochlear pressure. Our second middle ear aim explores a theoretical prediction that the air cavity behind the eardrum provides reflection that is the basis for good sound transmission at high frequencies. Finally, our last aim explores a novel method for deep cochlear implant insertion using viscous forces. The method will by evaluated physiologically in the proposed studies.
PUBLIC HEALTH RELEVANCE: Exploring auditory mechanics with pressure and motion measurements. The core objective of the project is to understand the mechanical processing of the auditory periphery: how the middle ear effectively transmits sound to the inner ear, and the mechanical processing that leads to a frequency-sorted pattern of vibration along the long narrow strip of sensory tissue in the inner ear. Additionally, we have developed a non-traumatic method of cochlear implant insertion and will further develop and test this method. We use micro-pressure-sensors that were developed in our laboratory, and laser-based methods for measuring tiny motions, in order to test current theories of the operation of the ear and measure mechanical responses in implanted inner ears.
描述(由申请人提供):通过压力和运动测量探索听觉力学。 这里提出的一系列实验使用压力传感器和我们实验室开发的其他特殊技术,并辅以激光多普勒测速等成熟的方法来探索听觉力学。前四个目标的项目继续并扩展了我们之前在内耳和中耳力学方面的工作。最终目标是开发和评估一种深部人工耳蜗植入的新方法。 声音输入会引起内耳内感觉组织运动的波型,该运动被传送到听觉神经,从而产生听力。这是在实验可及性非常有限的耳蜗室内进行的。这里提出的一项和两项研究的目标是利用专门的微型传感器进入这些难以接近的隔间。目标一使用进一步小型化的微压力传感器来测量 scala 介质压力的体内测量。第二个目标是通过将我们实验室完善的鼓阶压力测量与同一位置(柯蒂氏器微米范围内)的耳蜗颤音测量相结合来改进。这两个目标都是为了测试具体的理论预测,以便对知识的进步产生重大影响。即使在鼓膜对声音有复杂的随机波响应的频率下,声音也能通过中耳以高保真度传输。最近的理论利用鼓膜波进行声音传输,我们的目标是通过用硬化剂改变波速、用激光测速仪测量波速以及用耳蜗内压力监测声音传输来进行预测的三个测试。我们的第二个中耳目标探索了一个理论预测,即鼓膜后面的气腔提供反射,这是高频声音良好传输的基础。最后,我们的最后一个目标是探索一种利用粘性力进行深部人工耳蜗植入的新方法。该方法将在拟议的研究中进行生理学评估。
公共健康相关性:通过压力和运动测量探索听觉力学。该项目的核心目标是了解听觉外围的机械处理:中耳如何有效地将声音传输到内耳,以及沿着内耳感觉组织的狭长条带产生按频率分类的振动模式的机械处理。此外,我们还开发了一种非创伤性人工耳蜗植入方法,并将进一步开发和测试该方法。我们使用实验室开发的微压力传感器和基于激光的方法来测量微小运动,以测试当前的耳朵操作理论并测量植入内耳的机械反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ELIZABETH S. OLSON其他文献
ELIZABETH S. OLSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ELIZABETH S. OLSON', 18)}}的其他基金
Auditory Mechanics and the Cochlear Amplifier 2020
听觉力学和耳蜗放大器 2020
- 批准号:
10330593 - 财政年份:2016
- 资助金额:
$ 34.21万 - 项目类别:
Auditory Mechanics and the Cochlear Amplifier 2020
听觉力学和耳蜗放大器 2020
- 批准号:
10569100 - 财政年份:2016
- 资助金额:
$ 34.21万 - 项目类别:
Intracochlear measures of active cochlear mechanics
主动耳蜗力学的耳蜗内测量
- 批准号:
7993087 - 财政年份:2009
- 资助金额:
$ 34.21万 - 项目类别:
Intracochlear measures of active cochlear mechanics
主动耳蜗力学的耳蜗内测量
- 批准号:
7770498 - 财政年份:2009
- 资助金额:
$ 34.21万 - 项目类别:
EXPOSING MECHANICAL IMPEDANCE OF THE COCHLEAR PARTITION
暴露耳蜗分区的机械阻抗
- 批准号:
2592077 - 财政年份:1997
- 资助金额:
$ 34.21万 - 项目类别:
OBSERVING AUDITORY MECHANICS WITH PRESSURE MEASUREMENTS
通过压力测量观察听觉力学
- 批准号:
6547427 - 财政年份:1996
- 资助金额:
$ 34.21万 - 项目类别:
Observing auditory mechanics with pressure and motion measurements
通过压力和运动测量来观察听觉力学
- 批准号:
8227963 - 财政年份:1996
- 资助金额:
$ 34.21万 - 项目类别:
Observing auditory mechanics with pressure and motion measurements
通过压力和运动测量来观察听觉力学
- 批准号:
7173390 - 财政年份:1996
- 资助金额:
$ 34.21万 - 项目类别:
Observing auditory mechanics with pressure and motion measurements
通过压力和运动测量来观察听觉力学
- 批准号:
8613484 - 财政年份:1996
- 资助金额:
$ 34.21万 - 项目类别:
EXPOSING MECHANICAL IMPEDANCE OF THE COCHLEAR PARTITION
暴露耳蜗分区的机械阻抗
- 批准号:
2377588 - 财政年份:1996
- 资助金额:
$ 34.21万 - 项目类别:














{{item.name}}会员




