OBSERVING AUDITORY MECHANICS WITH PRESSURE MEASUREMENTS

通过压力测量观察听觉力学

基本信息

  • 批准号:
    6547427
  • 负责人:
  • 金额:
    $ 10.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-03-01 至 2006-02-28
  • 项目状态:
    已结题

项目摘要

The proposed project explores the mechanics of the cochlea and middle ear via measurements of sound pressure in the cochlea, the ear canal and the middle ear cavity. The experiments and interpretation are direct, basic probes of auditory mechanics. The majority of the research effort will be spent on the cochlear study; the middle ear work is a related, smaller study. The cochlea is selective to individual frequencies of sound pressure, as sensitive as physical limits allow, and instantaneously adaptive to a wide range of stimulus levels. At the heart of cochlear operation is a fluid/tissue -and- pressure/motion wave which transports sound energy down the cochlea to frequency-dependent locations on the organ of Corti. Many questions about cochlear mechanics remain. These questions concern fundamental unknowns, such as the physical basis for frequency mapping and tuning, as well as more refined issues, such as the basis for nonlinearity. The proposed experiments examine both the tissue and fluid components of the cochlear traveling wave by using pressure maps to simultaneously measure the wave's pressure and motion components. Pressure will be mapped in the fluid close to the basilar membrane while stimulating the cochlea with sound delivered to the ear canal, or with electric current (at levels which activate the cochlea's natural electro-mechanical transduction). The results will be used to quantify and explore elements central to tuning, frequency mapping and nonlinearity: the wave's effective fluid mass and the mechanical impedance of the organ of Corti, mode changes in the motion of the basilar membrane and energy injection into the traveling wave. Understanding the mechanics of the cochlea is a vital and elusive goal. The progress of many researchers, and technical and computing innovations are bringing this goal within reach. Better understanding the cochlea's mechanical operation will impact on deafness prevention and treatment, especially the design of digital hearing aids and cochlear implants. Accumulating evidence indicates that sound is transmitted through the middle ear as a traveling wave. For example, the phase-vs- frequency behavior of the sound pressure inside the cochlea at the stapes (the output of the middle ear), relative to that in the ear canal (the input to the middle ear) is delay-like between 2 and 40 kHz. The gain (cochlear pressure/ear canal pressure) is nearly flat over these frequencies. Thus, both the temporal and the frequency information in sound is transmitted by the middle ear to the cochlea with high fidelity. How does the middle ear do it? To address this question, sound will be delivered to the ear canal and pressure measurements will be made in the ear canal, the cochlea's scala vestibuli, and the middle ear space. These pressures, and their changes following reversible and irreversible manipulations to the ear will be analyzed to understand how the tympanic membrane and ossicles deliver sound to the cochlea. These results will impact on the treatment of the middle ear and the design of middle ear prostheses.
拟议的项目通过测量耳蜗、耳道和中耳腔的声压来探索耳蜗和中耳的力学。 实验和口译是听觉力学的直接的、基本的探索。 大部分研究工作将用于耳蜗研究;中耳研究是一项相关的较小研究。耳蜗对声压的各个频率具有选择性,在物理极限允许的范围内敏感,并立即适应各种刺激水平。 耳蜗操作的核心是流体/组织和压力/运动波,其将声能沿耳蜗向下传输到Corti器官上的频率依赖性位置。关于耳蜗力学的许多问题仍然存在。 这些问题涉及基本的未知数,如频率映射和调谐的物理基础,以及更精细的问题,如非线性的基础。 所提出的实验通过使用压力图来同时测量波的压力和运动分量来检查耳蜗行波的组织和流体分量。 压力将被映射在靠近基底膜的流体中,同时用传递到耳道的声音或用电流(在激活耳蜗的自然机电转换的水平)刺激耳蜗。 结果将被用来量化和探索元素的核心调谐,频率映射和非线性:波的有效流体质量和机械阻抗的器官的Corti,模式的变化在运动的基底膜和能量注入到行波。了解耳蜗的机制是一个至关重要而又难以捉摸的目标。 许多研究人员的进步以及技术和计算创新正在使这一目标触手可及。深入了解耳蜗的机械运行机制,将对耳聋的防治,特别是数字助听器和人工耳蜗的设计产生重要影响。越来越多的证据表明声音是以行波的形式通过中耳传播的。 例如,耳蜗内镫骨处的声压(中耳的输出)相对于耳道中的声压(中耳的输入)的相位对频率行为在2和40 kHz之间是延迟状的。 增益(耳蜗压力/耳道压力)在这些频率上几乎是平坦的。 因此,声音中的时间和频率信息都由中耳以高保真度传输到耳蜗。 中耳是怎么做到的? 为了解决这个问题,声音将被传递到耳道,并在耳道、耳蜗前庭阶和中耳腔中进行压力测量。将分析这些压力及其在对耳朵进行可逆和不可逆操作后的变化,以了解鼓膜和听小骨如何将声音传递到耳蜗。 这些结果将对中耳的治疗和中耳假体的设计产生影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ELIZABETH S. OLSON其他文献

ELIZABETH S. OLSON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ELIZABETH S. OLSON', 18)}}的其他基金

Auditory Mechanics and the Cochlear Amplifier 2020
听觉力学和耳蜗放大器 2020
  • 批准号:
    10330593
  • 财政年份:
    2016
  • 资助金额:
    $ 10.69万
  • 项目类别:
Auditory Mechanics and the Cochlear Amplifier 2020
听觉力学和耳蜗放大器 2020
  • 批准号:
    10569100
  • 财政年份:
    2016
  • 资助金额:
    $ 10.69万
  • 项目类别:
Intracochlear measures of active cochlear mechanics
主动耳蜗力学的耳蜗内测量
  • 批准号:
    7993087
  • 财政年份:
    2009
  • 资助金额:
    $ 10.69万
  • 项目类别:
Intracochlear measures of active cochlear mechanics
主动耳蜗力学的耳蜗内测量
  • 批准号:
    7770498
  • 财政年份:
    2009
  • 资助金额:
    $ 10.69万
  • 项目类别:
EXPOSING MECHANICAL IMPEDANCE OF THE COCHLEAR PARTITION
暴露耳蜗分区的机械阻抗
  • 批准号:
    2592077
  • 财政年份:
    1997
  • 资助金额:
    $ 10.69万
  • 项目类别:
Observing auditory mechanics with pressure and motion measurements
通过压力和运动测量来观察听觉力学
  • 批准号:
    8227963
  • 财政年份:
    1996
  • 资助金额:
    $ 10.69万
  • 项目类别:
Observing auditory mechanics with pressure and motion measurements
通过压力和运动测量来观察听觉力学
  • 批准号:
    8105869
  • 财政年份:
    1996
  • 资助金额:
    $ 10.69万
  • 项目类别:
Observing auditory mechanics with pressure and motion measurements
通过压力和运动测量来观察听觉力学
  • 批准号:
    8613484
  • 财政年份:
    1996
  • 资助金额:
    $ 10.69万
  • 项目类别:
Observing auditory mechanics with pressure and motion measurements
通过压力和运动测量来观察听觉力学
  • 批准号:
    7173390
  • 财政年份:
    1996
  • 资助金额:
    $ 10.69万
  • 项目类别:
EXPOSING MECHANICAL IMPEDANCE OF THE COCHLEAR PARTITION
暴露耳蜗分区的机械阻抗
  • 批准号:
    2377588
  • 财政年份:
    1996
  • 资助金额:
    $ 10.69万
  • 项目类别:

相似海外基金

CAREER: Evolutionary biomechanics and functional morphology of salamander locomotion
职业:蝾螈运动的进化生物力学和功能形态
  • 批准号:
    2340080
  • 财政年份:
    2024
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Continuing Grant
2024 Summer Biomechanics, Bioengineering, and Biotransport Conference; Lake Geneva, Wisconsin; 11-14 June 2024
2024年夏季生物力学、生物工程和生物运输会议;
  • 批准号:
    2413182
  • 财政年份:
    2024
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Standard Grant
Cruising the whale superhighway: The evolution, biomechanics, and ecological drivers of migration in cetaceans
巡航鲸鱼高速公路:鲸目动物迁徙的进化、生物力学和生态驱动因素
  • 批准号:
    NE/Y000757/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Research Grant
Predictive Biomechanics for Modelling Gait Stability and Falls Prediction
用于步态稳定性和跌倒预测建模的预测生物力学
  • 批准号:
    DP240101449
  • 财政年份:
    2024
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Discovery Projects
CAREER: Characterization of Vocal Fold Vascular Lesions Biomechanics using Computational Modeling
职业:使用计算模型表征声带血管病变生物力学
  • 批准号:
    2338676
  • 财政年份:
    2024
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator, Track M: TANDEM: Tensegrity-based Assistive aND rehabilitation Exosuits to complement human bioMechanics
NSF 融合加速器,轨道 M:TANDEM:基于张拉整体的辅助和康复外装,以补充人体生物力学
  • 批准号:
    2344385
  • 财政年份:
    2024
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: The three-dimensional biomechanics of the grasping big toe among higher primates
博士论文研究:高等灵长类抓握大脚趾的三维生物力学
  • 批准号:
    2341368
  • 财政年份:
    2024
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Standard Grant
Material testing machine for biomechanics
生物力学材料试验机
  • 批准号:
    520201861
  • 财政年份:
    2023
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Major Research Instrumentation
Stem cell/niche biomechanics in intestinal health and disease
肠道健康和疾病中的干细胞/利基生物力学
  • 批准号:
    2885708
  • 财政年份:
    2023
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Studentship
Determining the impact of lifestyle-related biomechanics on muscle in the ageing human arm
确定与生活方式相关的生物力学对衰老人类手臂肌肉的影响
  • 批准号:
    2899554
  • 财政年份:
    2023
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了