Advancing Protein Identification for Imaging Mass Spectrometry for Pathology
推进病理学成像质谱的蛋白质鉴定
基本信息
- 批准号:8314708
- 负责人:
- 金额:$ 34.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-05 至 2014-02-28
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAlgorithmsAreaBioinformaticsBrainClinicalClinical PathologyCohort StudiesComplexComputer softwareControlled StudyCut proteinDataDevelopmentDiagnosticDigestionDiseaseFeasibility StudiesHeart ValvesHistocompatibility TestingHumanImageIn SituIonsKidneyLiquid ChromatographyLiverMass Spectrum AnalysisMeasurableMeasuresMedical ImagingMethodsMetricModificationMolecular ProfilingMusPathologyPeptidesPhasePhosphorylationPost-Translational Protein ProcessingPreparationProteinsProteomicsProtocols documentationPublic HealthResearchResearch PersonnelResolutionSamplingShotgunsSiteSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationSumTissue SampleTissuesTranslationsWorkdata acquisitiondisease diagnosisglycosylationimprovedin vivoinstrumentlink proteinmass analyzernext generationprognosticsoftware developmentsuccesstandem mass spectrometrytool
项目摘要
DESCRIPTION (provided by applicant): Molecular signatures collected from intact tissue sections by MALDI imaging mass spectrometry (MALDI IMS) have shown high potential for use as a prognostic or diagnostic pathology tool in the clinical setting. A major obstacle to the widespread deployment of MALDI IMS, however, is the difficulty of identifying the proteins contributing to the signatures. Researchers have tried a number of approaches, including in situ digestion, MALDI TOF/TOF tandem mass spectrometry, and top-down proteomics on specific image regions. In preliminary work, we have obtained promising experimental results using top-down proteomics on intact proteins in the 2 - 20 kDa range. However, the lack of successful algorithms and software to identify the proteins in IMS mass signatures poses a major bottleneck. In particular, available top-down proteomics software relies heavily on high-accuracy mass spectrometry. The requirement for high accuracy precludes the use of some of the most sensitive mass analyzers such as linear ion traps, especially useful for these very small and complex samples. Protein Metrics Inc. is a new software company building on six years of algorithms and software research at Palo Alto Research Center. We plan to extend Byonic, our next- generation proteomics search engine, to intact proteins up to about 20 kDa. For proteins larger than 20 kDa, we will also build software for middle-down proteomics, specifically for assembling large peptides (2 - 20 kDa) produced by limited digestion to recover the identity of the intact proteins observed in IMS. The proposed Phase I feasibility study will allow us to perform controlled studies to determine the best experimental and bioinformatics approaches. Phase II will then build commercial-grade software. The proposed project will advance the state of the art in imaging mass spectrometry. Translation of imaging mass spectrometry to routine clinical pathology use will advance the state-of-the-art in disease diagnosis and treatment, and advance medical imaging and public health.
PUBLIC HEALTH RELEVANCE: The project will develop commercial software that will improve our ability to identify the proteins and modifications represented in imaging mass spectrometry molecular signatures. Project success will make imaging mass spectrometry much more useful as a clinical pathology tool.
描述(由申请人提供):MALDI成像质谱仪(MALDI IMS)从完整的组织切片中收集的分子签名已显示出在临床环境中用作预后或诊断病理学工具的高潜力。然而,MALDI IMS广泛应用的一个主要障碍是难以识别有助于签名的蛋白质。研究人员尝试了许多方法,包括原位消化、MALDI TOF/TOF串联质谱学和特定图像区域的自上而下的蛋白质组学。在前期工作中,我们对2-20 kDa范围内的完整蛋白质进行了自上而下的蛋白质组学研究,获得了有希望的实验结果。然而,缺乏成功的算法和软件来识别IMS大规模签名中的蛋白质构成了一个主要的瓶颈。特别是,现有的自上而下的蛋白质组学软件在很大程度上依赖于高精度的质谱仪。对高准确度的要求排除了一些最灵敏的质量分析器的使用,例如线性离子陷阱,对这些非常小和复杂的样品特别有用。Protein Metrics Inc.是一家新的软件公司,建立在帕洛阿尔托研究中心六年的算法和软件研究基础上。我们计划将我们的下一代蛋白质组学搜索引擎Byonic扩展到大约20 kDa的完整蛋白质。对于大于20 kDa的蛋白质,我们还将建立中下游蛋白质组学软件,专门用于组装有限消化产生的大肽(2-20 kDa),以恢复在IMS中观察到的完整蛋白质的身份。拟议的第一阶段可行性研究将使我们能够进行对照研究,以确定最佳的实验和生物信息学方法。然后,第二阶段将构建商业级软件。拟议的项目将促进成像质谱学的最先进水平。将成像质谱学转化为常规的临床病理学应用,将促进疾病诊断和治疗的最新水平,并促进医学成像和公共健康。
与公共健康相关:该项目将开发商业软件,以提高我们识别成像质谱学分子特征中所代表的蛋白质和修饰的能力。项目的成功将使成像质谱学作为一种临床病理工具更加有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARSHALL Wayne BERN其他文献
MARSHALL Wayne BERN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARSHALL Wayne BERN', 18)}}的其他基金
New Algorithms and Software for Mass Spectrometric Analysis of Intact Proteins and Complexes
用于完整蛋白质和复合物质谱分析的新算法和软件
- 批准号:
10155924 - 财政年份:2019
- 资助金额:
$ 34.86万 - 项目类别:
New Algorithms and Software for Mass Spectrometric Analysis of Intact Proteins and Complexes
用于完整蛋白质和复合物质谱分析的新算法和软件
- 批准号:
10333416 - 财政年份:2019
- 资助金额:
$ 34.86万 - 项目类别:
Integrated Platform for Mass-Spectrometric Studies of Protein Structure
蛋白质结构质谱研究集成平台
- 批准号:
9909995 - 财政年份:2017
- 资助金额:
$ 34.86万 - 项目类别:
Integrated Platform for Mass-Spectrometric Studies of Protein Structure
蛋白质结构质谱研究集成平台
- 批准号:
10092176 - 财政年份:2017
- 资助金额:
$ 34.86万 - 项目类别:
Comprehensive Glycoproteomic Tool Development for Cancer Biomarkers
癌症生物标志物的综合糖蛋白组学工具开发
- 批准号:
9769771 - 财政年份:2014
- 资助金额:
$ 34.86万 - 项目类别:
Advancing Protein Identification for Imaging Mass Spectrometry for Pathology
推进病理学成像质谱的蛋白质鉴定
- 批准号:
8539636 - 财政年份:2012
- 资助金额:
$ 34.86万 - 项目类别:
Algorithms and Software for Protein-Family De Novo Sequencing
蛋白质家族从头测序的算法和软件
- 批准号:
8119094 - 财政年份:2010
- 资助金额:
$ 34.86万 - 项目类别:
Algorithms and Software for Protein-Family De Novo Sequencing
蛋白质家族从头测序的算法和软件
- 批准号:
7963658 - 财政年份:2010
- 资助金额:
$ 34.86万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 34.86万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 34.86万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 34.86万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 34.86万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 34.86万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 34.86万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 34.86万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 34.86万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 34.86万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 34.86万 - 项目类别:
Standard Grant