Model generalization and parameter consistency for cognitive models of decision m
决策认知模型的模型泛化和参数一致性
基本信息
- 批准号:8249805
- 负责人:
- 金额:$ 15.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-04-01 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:Bayesian MethodBrain InjuriesCharacteristicsChi-Square TestsChoice BehaviorClinicalCognitiveComplexDataData SetDecision MakingDecision ModelingDrug abuseExhibitsGamblingIndividualIndividual DifferencesIowaLaboratoriesLearningMeasuresMethodologyMethodsModelingPerformancePharmaceutical PreparationsPopulationProceduresProcessReaction TimeRiskSorting - Cell MovementSourceTestingWisconsinWorkbasediscountingdrug abuserimprovedpublic health relevancesuccess
项目摘要
DESCRIPTION (provided by applicant): The purpose of this proposal is to extend our past work comparing performance of brain damaged, drug abusing, or psychopathological individuals and with non abusing or normal individuals on standard laboratory decision making tasks. Performance on these tasks is an interaction and synthesis of three different underlying components, including motivational, learning, and choice processes. Cognitive models of these complex decision tasks are used to break performance down into these three components. The parameters associated with these components are then used to understand the source of the decision making deficits exhibited by these clinical populations. Two critical assumptions underlying this past work are the assumptions of model generalization and parameter consistency. A model generalizes if one can fit the parameters of the model to one task for an individual, and then use these same parameters to predict performance on other closely related tasks for the same individual. Parameters are consistent if the parameters estimated from one task for an individual correlate with the parameters estimated from another closely related task for the same individual. These assumptions are crucial if we want to interpret the parameters as measuring stable characteristics of an individual, rather than some inessential characteristics of a laboratory task. So far, we achieved some initial success obtaining model generalization and parameter consistency. But success has been limited for at least two reasons: one is the need to find better models through model comparison, and the other is the need for better methods of estimating model parameters. We plan to improve our methods using new hierarchical Bayesian analyses. This new methodology allows one to build a model for individual differences rather than fitting individuals separately. This way the parameters for a single individual are estimated through a model which is informed by data from all individuals. This provides more stable parameter estimates and more powerful methods for model comparison. We also plan to extend the hierarchical Bayesian method for comparing model generalization.
PUBLIC HEALTH RELEVANCE: hisrsarchinvstiats th undrly in causesfor decision main dficits in brai daaed,drug abuse, and psychopathological populations his information will eventually b usdtod sign and prdicttratetutcmes o theseciica sychoopgroyblms.
描述(由申请人提供):本提案的目的是扩展我们过去的工作,比较脑损伤、药物滥用或精神病理学个体与非滥用或正常个体在标准实验室决策任务中的表现。这些任务的表现是三个不同的基本组成部分的相互作用和综合,包括动机,学习和选择过程。这些复杂决策任务的认知模型被用来将绩效分解为这三个部分。然后使用与这些组件相关的参数来了解这些临床人群所表现出的决策缺陷的来源。两个关键的假设基础上,过去的工作是模型的泛化和参数的一致性的假设。如果一个人可以将模型的参数拟合到一个人的一项任务,然后使用这些相同的参数来预测同一个人在其他密切相关的任务上的表现,那么模型就可以进行推广。如果从个体的一个任务估计的参数与从同一个体的另一密切相关的任务估计的参数相关,则参数是一致的。如果我们想将这些参数解释为测量个体的稳定特征,而不是实验室任务的一些无关紧要的特征,那么这些假设是至关重要的。到目前为止,我们取得了一些初步的成功,获得模型的推广和参数的一致性。但成功受到限制,原因至少有两个:一是需要通过模型比较找到更好的模型,二是需要更好的方法来估计模型参数。我们计划使用新的分层贝叶斯分析来改进我们的方法。这种新的方法允许人们建立一个模型的个体差异,而不是单独拟合个人。通过这种方式,通过由所有个体的数据提供信息的模型来估计单个个体的参数。这为模型比较提供了更稳定的参数估计和更强大的方法。我们还计划扩展层次贝叶斯方法比较模型的泛化。
公共卫生相关性:他的研究在大脑疾病、药物滥用和精神病理人群中的主要决策缺陷的原因,他的信息最终将B用于这些特殊的精神疾病的标记和预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEROME R BUSEMEYER其他文献
JEROME R BUSEMEYER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEROME R BUSEMEYER', 18)}}的其他基金
Model generalization and parameter consistency for cognitive models of decision m
决策认知模型的模型泛化和参数一致性
- 批准号:
8021916 - 财政年份:2011
- 资助金额:
$ 15.4万 - 项目类别:
Model generalization and parameter consistency for cognitive models of decision m
决策认知模型的模型泛化和参数一致性
- 批准号:
8445328 - 财政年份:2011
- 资助金额:
$ 15.4万 - 项目类别:
相似海外基金
Poly-Matching Causal Inference for Assessing Multiple Acute Medical Managements of Pediatric Traumatic Brain Injuries
用于评估小儿创伤性脑损伤的多种急性医疗治疗的多重匹配因果推理
- 批准号:
10586785 - 财政年份:2023
- 资助金额:
$ 15.4万 - 项目类别:
I-Corps: Eye-Tracking System for Cognitive Abnormalities and Traumatic Brain Injuries
I-Corps:针对认知异常和创伤性脑损伤的眼动追踪系统
- 批准号:
2344020 - 财政年份:2023
- 资助金额:
$ 15.4万 - 项目类别:
Standard Grant
An Analysis of Traumatic Brain Injuries and Health Trajectories in Vancouver's Marginally Housed Population
温哥华边缘居住人口的脑外伤和健康轨迹分析
- 批准号:
466827 - 财政年份:2021
- 资助金额:
$ 15.4万 - 项目类别:
Studentship Programs
Caregiver Wellness after Traumatic Brain Injury (CG-WELL): An Intervention Designed to Promote Well-being in Caregivers of Acute Moderate to Severe Traumatic Brain Injuries
创伤性脑损伤后的护理人员健康 (CG-WELL):旨在促进急性中度至重度创伤性脑损伤护理人员健康的干预措施
- 批准号:
10629175 - 财政年份:2021
- 资助金额:
$ 15.4万 - 项目类别:
Caregiver Wellness after Traumatic Brain Injury (CG-WELL): An Intervention Designed to Promote Well-being in Caregivers of Acute Moderate to Severe Traumatic Brain Injuries
创伤性脑损伤后护理人员的健康 (CG-WELL):旨在促进急性中度至重度创伤性脑损伤护理人员健康的干预措施
- 批准号:
10215077 - 财政年份:2021
- 资助金额:
$ 15.4万 - 项目类别:
Meta-analysis: Is Prospective Memory Impaired in Populations with Traumatic Brain Injuries?
荟萃分析:脑外伤人群的未来记忆是否受损?
- 批准号:
481152 - 财政年份:2021
- 资助金额:
$ 15.4万 - 项目类别:
Studentship Programs
Serum neurofilament light as a biomarker to improve management of mild traumatic brain injuries
血清神经丝光作为生物标志物改善轻度创伤性脑损伤的治疗
- 批准号:
nhmrc : 2002689 - 财政年份:2021
- 资助金额:
$ 15.4万 - 项目类别:
Ideas Grants
Caregiver Wellness after Traumatic Brain Injury (CG-WELL): An Intervention Designed to Promote Well-being in Caregivers of Acute Moderate to Severe Traumatic Brain Injuries
创伤性脑损伤后的护理人员健康 (CG-WELL):旨在促进急性中度至重度创伤性脑损伤护理人员健康的干预措施
- 批准号:
10398241 - 财政年份:2021
- 资助金额:
$ 15.4万 - 项目类别:
Virtual Reality-based Rehabilitation for Children with Traumatic Brain Injuries
基于虚拟现实的脑外伤儿童康复
- 批准号:
10178242 - 财政年份:2020
- 资助金额:
$ 15.4万 - 项目类别:
New Photo-Acoustic Imaging Process in Fetal Monitoring to Dramatically Reduce Brain Injuries in Newborns
胎儿监测中的新光声成像流程可显着减少新生儿脑损伤
- 批准号:
10010328 - 财政年份:2020
- 资助金额:
$ 15.4万 - 项目类别: