Tumor models for the study of inflammation and oncogenesis
用于研究炎症和肿瘤发生的肿瘤模型
基本信息
- 批准号:8349227
- 负责人:
- 金额:$ 33.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AnimalsBacterial ProteinsCarcinomaChronicClear CellCodeColon CarcinomaCoupledDNADNA deliveryDevelopmentElectroporationFamilyGene DeliveryGene ExpressionGene SilencingGenesGeneticGrowth FactorHepaticHepatitis CHepatitis C virusHistopathologyHyperplasiaImmuneImmune responseInflammationInflammation MediatorsInflammatoryInjection of therapeutic agentInterleukin-1 alphaInterleukin-6KidneyKidney DiseasesLesionLiverLiver Cell AdenomaLuciferasesMalignant NeoplasmsMeasuresMediatingMediator of activation proteinModelingMolecularMouse StrainsMusMutationNF-kappa BNeoplasm MetastasisNeoplastic Cell TransformationOncogenesOncogenicOrganOrgan ModelPathway interactionsPhosphorylationPhysiologicalPlayPre-Clinical ModelPremalignantPrimary carcinoma of the liver cellsProteinsProto-Oncogene Proteins c-aktRNF139 geneReactionRenal Cell CarcinomaReporter GenesRoleSTAT3 geneSignal PathwaySignal TransductionSleeping BeautySomatic CellStudy modelsSystemTSC2 geneTechnologyTestingTherapeuticTissuesTransforming Growth Factor alphaTransgenic MiceTransitional Cell PapillomaTumor InitiatorsTumor PromotionVHL geneViral Proteinsadenomabeta catenincellular engineeringclinically relevantcytokinedesignexpression vectorhuman diseasein vivointerleukin-22interleukin-23mouse modelrepairedresponsesmall hairpin RNAtherapeutic developmenttumortumor progressiontumorigenesistumorigenicuptake
项目摘要
The rational design of therapeutic approaches to human disease is greatly facilitated when an accurate pre-clinical model is available. Mouse tumor models are most useful when they reproduce as many known molecular lesions as possible, so as to most accurately portray the bodys physiological response to tumorigenesis. With somatic cell engineering (Sleeping Beauty/SB), we can recapitulate multiple lesions simultaneously with ease and scale not possible by other means. Our animal tumor studies to date have focused on renal cell carcinoma (RCC) with an emphasis on the liver microenvironment as a frequent depot for metastases. We have therefore chosen the kidney and liver as two model organs for the development of RCC and hepatocellular carcinoma (HCC) tumor models. Our first aim is to optimize hepatic and renal delivery of oncogenes to the liver and kidney, respectively, using SB technology. For this, we will use reporter genes, such as Gaussia luciferase DNA, which allow for a quantitative measure of gene delivery to the intended organ. We routinely use hydrodynamic DNA delivery and have optimized direct intra-renal injection for the uptake of a Gaussia luciferase expression vector. Many oncogenes and pathways associated with HCC and RCC have been described. For HCC, MET, beta-catenin, and p53 are often cited as primary markers in addition to hepatitis C virus (HCV)-induced HCC. In RCC, MET phosphorylation, VHL, TRC8, and TSC2 are primary markers of clear cell RCC. Both of these cancers also share oncogenic signaling pathways including Myc, Ras, TGFalpha, IL-6, and TNFalpha. In our second aim, we will screen combinations of these oncogenes for their tumorigenic potential using SB. Specifically, for HCC, combinations of oncogenic- MET, beta-catenin, AKT, T121, Myc and p53 will be tested. For RCC- shRNA knockdowns of the clear cell-related genes VHL, TSC2, and TRC8 along with the HCC oncogene set will be analyzed. In preliminary trials, we have reproducibly generated hepatocellular adenomas (HCA) by the co-delivery of SB-AKT and SB-beta-catenin, and HCC by the co-delivery of SB-MET and SB- beta-catenin. These and any other resultant tumors will be classified by histopathology and orthotopically passaged in vivo. Since these oncogenes are not usually sufficient to cause tumorigenesis, we consider it likely that tumors develop when these initiating mutations are coupled with inflammatory-mediated tumor promotion. Therefore, in the third aim of this project, we will identify cytokine and other inflammatory mediators of localized subclinical hepatic and renal chronic inflammation. Inflammatory mediators that are associated with HCC and RCC or found in their respective microenvironments include: STAT3, NF-kappaB, IL-6, TNFalpha, IL-1alpha, HMGb1, IL-22, IL-23 and HCV gene products. We will first test constitutively activated STAT3 and NF-kappaB, since they are convergence points of carcinogenic inflammatory signaling by different effector families. We hypothesize that these effector molecules may impact tumorigenesis by creating a microenvironment that is favorable to tumor promotion and progression. Histopathology will be used to score the tissue response with focus on identifying any hyperplasia, pre- neoplastic transformation, or tumorigenesis. Finally, the fourth aim of this project combines the resulting contributions of oncogenes (Aim 2) and inflammatory (Aim 3) mediators in tumor tumor promotion and progression. For this, we will deliver single SB-oncogenes signifying first hit tumor initiators along with SB-effectors to screen for oncogene-dependent inflammatory-mediated tumor promotion. Additionally, we will co-deliver combinations of SB-AKT/beta-catenin with SB-inflammatory mediators to screen for oncogene-dependent inflammatory-mediated tumor progression to carcinoma. This may define inflammatory components that mediate an adenoma-carcinoma sequence progression, similar to that which has been previously described in colon cancer. Analogously, for RCC, we have successfully generated a renal transitional cell papilloma that represents a model of pre-malignant cancer and will allow us to investigate the role inflammatory mediators may play in its progression to malignancy. The approaches described in this project will provide us with accurate pre-clinical models for both HCC and RCC and facilitate the development of therapeutics that more effectively target tumorigenesis.
当一个准确的临床前模型可用时,人类疾病治疗方法的合理设计将大大便利。当小鼠肿瘤模型尽可能多地复制已知的分子病变时,它们是最有用的,以便最准确地描绘身体对肿瘤发生的生理反应。通过体细胞工程(睡美人/SB),我们可以轻松地同时重现多个病变,并且通过其他方式无法实现规模化。迄今为止,我们的动物肿瘤研究主要集中在肾细胞癌(RCC)上,重点是肝脏微环境作为转移的常见场所。因此,我们选择肾脏和肝脏作为两个模型器官,用于RCC和肝细胞癌(HCC)肿瘤模型的开发。我们的第一个目标是使用SB技术优化癌基因分别向肝脏和肾脏的肝脏和肾脏递送。为此,我们将使用报告基因,如Gaussia荧光素酶DNA,其允许定量测量基因递送至预期器官。我们常规使用流体动力学DNA递送,并优化了直接肾内注射用于Gaussia荧光素酶表达载体的摄取。许多与肝癌和肾细胞癌相关的癌基因和途径已被描述。对于HCC,MET、β-连环蛋白和p53通常被认为是除了丙型肝炎病毒(HCV)诱导的HCC之外的主要标志物。在RCC中,MET磷酸化、VHL、TRC 8和TSC 2是透明细胞RCC的主要标志物。这两种癌症还共享致癌信号传导途径,包括Myc、Ras、TGF α、IL-6和TNF α。在我们的第二个目标中,我们将使用SB筛选这些致癌基因的组合的致瘤潜力。具体而言,对于HCC,将测试致癌MET、β-连环蛋白、AKT、T121、Myc和p53的组合。对于RCC,将分析透明细胞相关基因VHL、TSC 2和TRC 8沿着HCC癌基因集的shRNA敲除。在初步试验中,我们通过SB-AKT和SB-β-连环蛋白的共递送可重复地产生肝细胞腺瘤(HCA),并且通过SB-MET和SB-β-连环蛋白的共递送可重复地产生HCC。这些和任何其他产生的肿瘤将通过组织病理学分类并在体内原位传代。由于这些癌基因通常不足以引起肿瘤发生,我们认为当这些起始突变与炎症介导的肿瘤促进相结合时,肿瘤可能会发生。因此,在本项目的第三个目标中,我们将鉴定局部亚临床肝肾慢性炎症的细胞因子和其他炎症介质。与HCC和RCC相关或在其各自微环境中发现的炎症介质包括:STAT 3、NF-κ B、IL-6、TNF α、IL-1 α、HMGb 1、IL-22、IL-23和HCV基因产物。我们将首先测试组成性激活的STAT 3和NF-κ B,因为它们是不同效应子家族的致癌炎症信号传导的汇聚点。我们推测这些效应分子可能通过创造一个有利于肿瘤促进和进展的微环境来影响肿瘤发生。将使用组织学对组织反应进行评分,重点是识别任何增生、肿瘤前转化或肿瘤发生。最后,本项目的第四个目标结合了癌基因(目标2)和炎症(目标3)介质在肿瘤促进和进展中的作用。为此,我们将递送单个SB-癌基因,其标志着首先击中肿瘤起始物沿着SB-效应物,以筛选癌基因依赖性炎症介导的肿瘤促进。此外,我们将共同提供SB-AKT/β-连环蛋白与SB-炎症介质的组合,以筛选癌基因依赖性炎症介导的肿瘤进展为癌。这可能定义了介导腺瘤-癌序列进展的炎性成分,类似于先前在结肠癌中描述的。类似地,对于RCC,我们已经成功地产生了肾移行细胞乳头状瘤,其代表了癌前癌症的模型,并将使我们能够研究炎症介质在其恶性进展中可能发挥的作用。该项目中描述的方法将为我们提供准确的HCC和RCC临床前模型,并促进更有效地靶向肿瘤发生的治疗方法的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Wiltrout其他文献
Robert Wiltrout的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Wiltrout', 18)}}的其他基金
Immunophysiological Mechanisms in the Biological Therapy of Cancer
癌症生物治疗中的免疫生理学机制
- 批准号:
8937669 - 财政年份:
- 资助金额:
$ 33.54万 - 项目类别:
Characterization of the interaction between inflammation and cancer progression
炎症与癌症进展之间相互作用的表征
- 批准号:
8763266 - 财政年份:
- 资助金额:
$ 33.54万 - 项目类别:
Mechanisms of Leukocyte Migration Following Cytokine Administration to Mice
小鼠细胞因子给药后白细胞迁移的机制
- 批准号:
7965165 - 财政年份:
- 资助金额:
$ 33.54万 - 项目类别:
Tumor models for the study of inflammation and oncogenesis
用于研究炎症和肿瘤发生的肿瘤模型
- 批准号:
8937889 - 财政年份:
- 资助金额:
$ 33.54万 - 项目类别:
Characterization of the interaction between inflammation and cancer progression
炎症与癌症进展之间相互作用的表征
- 批准号:
8349226 - 财政年份:
- 资助金额:
$ 33.54万 - 项目类别:
Immunophysiological Mechanisms in the Biological Therapy of Cancer
癌症生物治疗中的免疫生理学机制
- 批准号:
8348921 - 财政年份:
- 资助金额:
$ 33.54万 - 项目类别:
相似海外基金
CAREER: Elucidating the Synergistic Nanoscale and Carbohydrate Interactions of Glyconanomaterials with Bacterial Proteins, Toxins, and Cells
职业:阐明聚糖纳米材料与细菌蛋白质、毒素和细胞的协同纳米级和碳水化合物相互作用
- 批准号:
2142579 - 财政年份:2022
- 资助金额:
$ 33.54万 - 项目类别:
Standard Grant
Development of machine learning methods for automated design of new biological functions in bacterial proteins.
开发机器学习方法,用于自动设计细菌蛋白质的新生物功能。
- 批准号:
2600923 - 财政年份:2021
- 资助金额:
$ 33.54万 - 项目类别:
Studentship
Heme transport in bacterial proteins using mass spectrometry and magnetic circular dichroism spectro
使用质谱和磁圆二色光谱分析细菌蛋白质中的血红素转运
- 批准号:
526817-2018 - 财政年份:2018
- 资助金额:
$ 33.54万 - 项目类别:
University Undergraduate Student Research Awards
Bacterial proteins as formulation ingredients.
细菌蛋白作为配方成分。
- 批准号:
BB/N022254/1 - 财政年份:2016
- 资助金额:
$ 33.54万 - 项目类别:
Research Grant
Production of difficult to express essential bacterial proteins
生产难以表达的必需细菌蛋白
- 批准号:
BB/P004237/1 - 财政年份:2016
- 资助金额:
$ 33.54万 - 项目类别:
Research Grant
Cell surface display of bacterial proteins
细菌蛋白质的细胞表面展示
- 批准号:
BB/N000951/1 - 财政年份:2016
- 资助金额:
$ 33.54万 - 项目类别:
Research Grant
Phosphorylation and acetylation of secreted bacterial proteins: a new regulatory
分泌细菌蛋白的磷酸化和乙酰化:新的调控
- 批准号:
8778792 - 财政年份:2014
- 资助金额:
$ 33.54万 - 项目类别:
The protein O-glycosylation pathway of Neisseria: a model system for O-glycosylation of bacterial proteins with potential use in biotechnology
奈瑟氏球菌的蛋白质 O-糖基化途径:细菌蛋白质 O-糖基化的模型系统,具有生物技术的潜在用途
- 批准号:
DP130103141 - 财政年份:2013
- 资助金额:
$ 33.54万 - 项目类别:
Discovery Projects
Preclinical study to elucidate molecular mechanism of matrix anchoring using bacterial proteins
利用细菌蛋白阐明基质锚定分子机制的临床前研究
- 批准号:
23590516 - 财政年份:2011
- 资助金额:
$ 33.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterisation of the bacterial proteins YjeE, YeaZ and YgjD and evaluation as a potential novel antimicrobial target
细菌蛋白 YjeE、YeaZ 和 YgjD 的表征以及作为潜在新型抗菌靶点的评估
- 批准号:
G1100376/1 - 财政年份:2011
- 资助金额:
$ 33.54万 - 项目类别:
Fellowship