4D Robust Optimization in Intensity-Modulated Proton Therapy

调强质子治疗中的 4D 鲁棒优化

基本信息

  • 批准号:
    8353825
  • 负责人:
  • 金额:
    $ 12.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-13 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The applicant's immediate career goal is to make the transition to a high-caliber independent researcher and to establish a small laboratory in an intense and supportive research environment. In the long term, the applicant hopes to develop a solid academic career focusing on translational research in the area of medical radiation physics that impacts various aspects of the state-of-the-art radiotherapy modalities. The candidate, who obtained his PhD from Princeton University in 2007 and later worked at the Los Alamos National Laboratory as a postdoctoral researcher, has extensive prior experience in computational physics, mathematics and algorithms, and software development, especially code development in massive parallel high-performance computing (HPC). The candidate also has solid analytical and mathematical skills to solve complicated physics problems, along with an interdisciplinary background. In July 2010, the candidate joined the faculty of the Department of Radiation Physics of The University of Texas MD Anderson Cancer Center as an assistant professor (research track). MD Anderson is a research-driven, comprehensive cancer hospital and is the leading cancer center in the United States. The Department of Radiation Physics provides the clinical, research, and educational resources necessary to support physics and dosimetry research related to cancer therapy. The department's Proton Therapy Center-Houston (PTC-H) began patient treatments in May 2006. PTC-H is one of few proton treatment centers in the world to have the capability to deliver intensity- and energy-modulated treatments with scanned proton beams, which is the major focus of the proposed research. During the award period, the candidate will focus on the development and validation of novel advanced radiation therapy methodologies. With the support of this K25 grant, the applicant plans to 1) obtain in-depth knowledge and hands-on experience in the clinical and research aspects of radiation therapy; 2) obtain in- depth knowledge of anatomy; 3) obtain in-depth knowledge of medical imaging; 4) obtain moderate knowledge of biostatistics; and 5) obtain moderate knowledge of radiobiology. To achieve these objectives, the applicant will work with a group of experienced mentors and collaborating researchers on joint projects focusing on the radiotherapy of cancers, take academic courses at Rice University and The University of Texas-Health Science Center at Houston, undergo clinical training in radiation therapy, and attend seminars and conferences. Four-dimensional (4D) robust optimization of intensity-modulated proton therapy (IMPT) has been chosen as the research topic for this K25 training program to help the applicant gain the experience necessary to become an independent investigator. The use of IMPT to treat lung cancers presents numerous challenges that need to be addressed through research to maximize the therapeutic benefits of this promising modality. What the candidate learns during this research will be widely applicable to many areas of research in this field. In principle, IMPT has the greatest potential to provide highly conformal tumor target coverage, while sparing adjacent healthy organs. However, characteristics of protons (e.g., the abrupt drop-off of dose beyond the range and scattering) make IMPT highly vulnerable to uncertainties. Sources of uncertainty include tumor shrinkage, weight loss, variation in patient setup, respiratory motion, uncertainties in CT numbers and stopping power ratios, and approximations in proton dose calculation algorithms. The current practice for managing uncertainties in IMPT is similar to that for intensity-modulated radiation therapy (IMRT), i.e., assigning a safety margin around the clinical target volume to produce a planning target volume. The resulting dose distributions are, in general, not robust in the face of uncertainties, i.e., what is delivered to the patient may be significantly different from what is seen on the computer-designed treatment plan and may lead to unforeseen clinical consequences. Therefore, investigations leading to the development of suitable 4D robust optimization methods to improve the optimality and robustness of IMPT plans to uncertainties, including regular and irregular motion, are vital. Our hypothesis is that 4D robust optimization can render IMPT plans less sensitive to uncertainties and achieve better sparing of normal tissues (both by at least a factor of two) than conventional plans optimized on the basis of margins. We propose to test our hypothesis in the following specific aims: (1) to quantify anatomy motion and its uncertainty; (2) to develop and implement 4D IMPT optimization; (3) to enhance the IMPT plan robustness; and (4) to validate IMPT 4D robust optimization. Compared to previous 4D robust optimization approaches in IMRT, the research proposed by the applicant has several innovative aspects, including a "customized", as-small-as-necessary margin optimized spontaneously to handle uncertainties and regular motion, the use of perturbation theory, widely used in quantum mechanics to solve the Schr¿dinger equation, to handle irregular motion, and memory-distributed parallelization to solve the challenging high-computer-memory requirement problem. We expect that our pioneering 4D robust optimization research in IMPT will fill gaps in our knowledge about appropriate ways to minimize the influence of uncertainties in IMPT and lead to significant benefits for cancer patients, especially those with thoracic and abdominal cancers. This project doesn't involve activities outside of the United States or partnerships with international collaborators.
描述(由申请人提供):申请人的近期职业目标是转变为高水平的独立研究人员,并在紧张和支持性的研究环境中建立一个小型实验室。从长远来看,申请人希望发展扎实的学术生涯,专注于医学辐射物理领域的转化研究,影响最先进的放射治疗方式的各个方面。该候选人于2007年获得普林斯顿大学博士学位,后来在洛斯阿拉莫斯国家实验室担任博士后研究员,在计算物理、数学和算法以及软件开发,特别是大规模并行高性能计算(HPC)中的代码开发方面拥有丰富的经验。候选人还具有解决复杂物理问题的扎实的分析和数学技能,以及跨学科背景。 2010年7月,候选人加入德克萨斯大学MD安德森癌症中心辐射物理系,担任助理教授(研究方向)。 MD 安德森癌症中心是一家以研究为导向的综合性癌症医院,是美国领先的癌症中心。辐射物理系提供必要的临床、研究和教育资源,以支持与癌症治疗相关的物理和剂量学研究。该部门的休斯顿质子治疗中心 (PTC-H) 于 2006 年 5 月开始对患者进行治疗。PTC-H 是世界上为数不多的能够通过扫描质子束提供强度和能量调制治疗的质子治疗中心之一,这是拟议研究的主要焦点。在获奖期间,候选人将专注于新型先进放射治疗方法的开发和验证。在这笔K25拨款的支持下,申请人计划:1)获得放射治疗临床和研究方面的深入知识和实践经验; 2)获得深入的解剖学知识; 3)深入了解医学影像知识; 4)获得适度的生物统计学知识; 5) 获得一定的放射生物学知识。为了实现这些目标,申请人将与一组经验丰富的导师和合作研究人员合作,开展专注于癌症放射治疗的联合项目,在莱斯大学和德克萨斯大学休斯顿健康科学中心学习学术课程,接受放射治疗的临床培训,并参加研讨会和会议。调强质子治疗 (IMPT) 的四维 (4D) 鲁棒优化已被选为该 K25 培训计划的研究主题,以帮助申请人获得成为独立研究者所需的经验。使用 IMPT 治疗肺癌带来了许多挑战,需要通过研究来解决,以最大限度地发挥这种有前途的治疗方式的治疗效果。候选人在这项研究中学到的东西将广泛适用于该领域的许多研究领域。原则上,IMPT 具有提供高度适形肿瘤靶标覆盖的最大潜力,同时不伤害邻近的健康器官。然而,质子的特性(例如,超出范围的剂量突然下降和散射)使得 IMPT 极易受到不确定性的影响。不确定性来源包括肿瘤缩小、体重减轻、患者设置的变化、呼吸运动、CT 数字和停止功率比的不确定性以及质子剂量计算算法的近似值。目前管理 IMPT 不确定性的做法与调强放射治疗 (IMRT) 的做法类似,即在临床靶区周围分配安全裕度以产生计划靶区。一般来说,面对不确定性,所得到的剂量分布并不稳健,即,向患者提供的剂量可能与计算机设计的治疗计划中看到的明显不同,并可能导致不可预见的临床后果。因此,通过研究开发合适的 4D 鲁棒优化方法来提高 IMPT 计划对不确定性(包括规则和不规则运动)的最优性和鲁棒性至关重要。我们的假设是,与基于边际优化的传统计划相比,4D 稳健优化可以使 IMPT 计划对不确定性不太敏感,并更好地保护正常组织(两者至少是两倍)。我们建议在以下具体目标中检验我们的假设:(1)量化解剖运动及其不确定性; (2) 开发并实施4D IMPT优化; (3)增强IMPT计划的稳健性; (4) 验证 IMPT 4D 鲁棒优化。与之前的IMRT中的4D鲁棒优化方法相比,申请人提出的研究具有几个创新方面,包括“定制”的、尽可能小的自发优化余量以处理不确定性和规则运动,使用量子力学中广泛使用的微扰理论来求解薛定谔方程,处理不规则运动,以及内存分布式并行化来解决具有挑战性的问题。 高计算机内存要求问题。我们预计,我们在 IMPT 方面开创性的 4D 稳健优化研究将填补我们在最小化 IMPT 不确定性影响的适当方法方面的知识空白,并为癌症患者,特别是那些患有胸部和腹部癌症的患者带来显着的益处。该项目不涉及美国以外的活动或与国际合作者的伙伴关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Liu其他文献

Porous TiC–TiB2–NiAl composites and effect of NiAl contents on pore structure and microstructure
多孔TiC—TiB2—NiAl复合材料及NiAl含量对孔结构和显微结构的影响
  • DOI:
    10.1179/1743290115y.0000000007
  • 发表时间:
    2015-06
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Hongzhi Cui;Xiaojie Song;Wei Liu;Nan Hou
  • 通讯作者:
    Nan Hou

Wei Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Liu', 18)}}的其他基金

New Strategies for Copper-Catalyzed Cross-Coupling of Alkyl Electrophiles
铜催化烷基亲电试剂交叉偶联的新策略
  • 批准号:
    10650863
  • 财政年份:
    2022
  • 资助金额:
    $ 12.52万
  • 项目类别:
Structural Biology of Dopamine Signaling
多巴胺信号传导的结构生物学
  • 批准号:
    10543124
  • 财政年份:
    2021
  • 资助金额:
    $ 12.52万
  • 项目类别:
Structural Biology of Dopamine Signaling
多巴胺信号传导的结构生物学
  • 批准号:
    10322399
  • 财政年份:
    2021
  • 资助金额:
    $ 12.52万
  • 项目类别:
Structural Biology of Dopamine Signaling
多巴胺信号传导的结构生物学
  • 批准号:
    10570686
  • 财政年份:
    2021
  • 资助金额:
    $ 12.52万
  • 项目类别:
Real time biofeedback Tai Chi training for knee osteoarthritis: A feasibility study
实时生物反馈太极拳训练治疗膝骨关节炎:可行性研究
  • 批准号:
    10374319
  • 财政年份:
    2018
  • 资助金额:
    $ 12.52万
  • 项目类别:
Real time biofeedback Tai Chi training for knee osteoarthritis: A feasibility study
实时生物反馈太极拳训练治疗膝骨关节炎:可行性研究
  • 批准号:
    9976459
  • 财政年份:
    2018
  • 资助金额:
    $ 12.52万
  • 项目类别:
Real time biofeedback Tai Chi training for knee osteoarthritis: A feasibility study
实时生物反馈太极拳训练治疗膝骨关节炎:可行性研究
  • 批准号:
    10468265
  • 财政年份:
    2018
  • 资助金额:
    $ 12.52万
  • 项目类别:
Real time biofeedback Tai Chi training for knee osteoarthritis: A feasibility study
实时生物反馈太极拳训练治疗膝骨关节炎:可行性研究
  • 批准号:
    9761465
  • 财政年份:
    2018
  • 资助金额:
    $ 12.52万
  • 项目类别:
Structure and Function of Dopamine Receptors
多巴胺受体的结构和功能
  • 批准号:
    9317762
  • 财政年份:
    2017
  • 资助金额:
    $ 12.52万
  • 项目类别:
4D Robust Optimization in Intensity-Modulated Proton Therapy
调强质子治疗中的 4D 鲁棒优化
  • 批准号:
    8725494
  • 财政年份:
    2012
  • 资助金额:
    $ 12.52万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 12.52万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.52万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 12.52万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.52万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 12.52万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 12.52万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.52万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 12.52万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 12.52万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.52万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了