Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
基本信息
- 批准号:8311901
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-21 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAfrica South of the SaharaAgeAnionsAnopheles GenusAnti-Infective AgentsAntimalarialsAreaArtemisininsBiological AssayCause of DeathCellsCessation of lifeChemicalsChemistryChildChloroquineChromosome MappingClinicalCulicidaeCytolysisDNADevelopmentDiseaseDisease ResistanceDrug CombinationsDrug KineticsDrug resistanceDrug-sensitiveErythrocyte MembraneEvaluationExhibitsFalciparum MalariaFemaleFutureGenesGoalsGrowthHumanHuman BitesIn VitroInfectionInhibitory Concentration 50LeadLife Cycle StagesLiver MicrosomesMalariaMalaria VaccinesMeasuresMediatingModelingMusMutationNutrientOralParasitesPermeabilityPharmaceutical ChemistryPharmaceutical PreparationsPhasePlasmodiumPlasmodium falciparumPregnant WomenPropertyProtein IsoformsProteinsPublic HealthResistanceRiskScreening procedureSmall Business Innovation Research GrantSolubilitySorbitolSpecificityStructureSurfaceTherapeutic AgentsToxicologyTransfectionUnited States National Institutes of HealthVaccinesWorkanalogaqueousartemisininebasechannel blockerscombatcytotoxicitydesignextracellularhigh throughput screeninghuman femaleimprovedin vitro Assayin vivoindexinginhibitor/antagonistinterdisciplinary approachkillingsnovelparasite genomepre-clinicalpreventresearch and developmentresearch studyrural areascaffoldsmall moleculestatistics
项目摘要
DESCRIPTION (provided by applicant): The overall objective of this project is to generate new, potent, selective antimalarials that act through a novel mechanism of blocking the plasmodial surface anion channel (PSAC), a previously unexploited and highly conserved plasmodial target. Human malaria is caused by five species of protozoan parasites in the genus Plasmodium. It is estimated that there are more than 500 million clinical cases of P. falciparum malaria and one million deaths annually, with ninety percent of the deaths occurring in sub-Saharan Africa. By far the most dangerous of these is P. falciparum, which accounts for nearly all malaria deaths. The malaria parasites, most importantly P. falciparum, require two hosts, which are humans and female Anopheles mosquitoes. Disease is transmitted to humans from the bite of an infected mosquito. There are no effective vaccines available to prevent malaria, but several small molecule treatment options exist, such as chloroquine (CQ) and artemisinin. CQ, once the mainstay of malaria treatment, has lost much of its efficacy because of mutations that confer resistance. New small molecule drugs, especially those working on new targets that may be less susceptible to acquired resistance, are desperately needed. PSAC is a newly discovered essential antimalarial target which was recently validated by gene identification experiments. The channel is produced by the parasite and inserts into the infected erythrocyte membrane. It was recently demonstrated that PSAC inhibitors, discovered by high-throughput screening, kills parasites by direct action on this channel. In preliminary studies, Dr. Sanjay Desai, NIH, developed and applied a screen for PSAC inhibitors using a sorbitol transport assay, that resulted in the identification of several chemotypes that displayed inhibitory potencies (K0.5 PSAC block) in the nanomolar range. Compounds also inhibited plasmodial growth with low micromolar to low nanomolar potencies (IC50). Two of the "hit compound" chemical scaffolds were chosen for medicinal chemistry optimization on the basis of their potency, low cytotoxicity, tractability of synthesis and overall favorable in vitro "drug-like" ADM results. The first, E912-0081 (MBX 2366) was designated as the primary scaffold, upon which chemistry SAR efforts will be focused. The second, C791-0105, has been selected as a backup scaffold should the primary scaffold fail to achieve the milestones set forth in Aims 1-3. The Phase I project will focus on optimizing in vitro properties such as potency, solubility and variou pharmacokinetic parameters predictive of in vivo efficacy and leading to identification of a lead compound(s). The best lead compound antimalarial PSAC inhibitors will then progress to Phase II for in vivo pharmacokinetics, toxicology and efficacy studies. The interdisciplinary approach, which will merge the antimalarial expertise of Dr. Desai with the anti-infective research and development capabilities of Microbiotix, will produce inhibitors for a newly discovered, essential and conserved malarial target and provide new treatment options for resistant infections.
PUBLIC HEALTH RELEVANCE: Human malarial disease, caused by parasites of the genus Plasmodium, afflicts 500 million and causes death in one million people per year. Although there are drugs available to treat the disease, resistance is rapidly eroding their efficacy. We propose to develop new antimalarial therapeutic agents that target an unexploited malarial anion channel protein, to combat the growing resistance problem.
描述(由申请人提供):该项目的总体目标是产生新的、有效的、选择性的抗疟疾药物,这些药物通过阻断疟原虫表面阴离子通道(PSAC)的新机制发挥作用,PSAC是以前未被开发和高度保守的疟原虫靶标。人类疟疾是由疟原虫属五种原生动物寄生虫引起的。据估计,每年有5亿多个恶性疟原虫临床病例和100万人死亡,其中90%的死亡发生在撒哈拉以南非洲。到目前为止,其中最危险的是恶性疟原虫,几乎所有疟疾死亡病例都是由它引起的。疟疾寄生虫,最重要的是恶性疟原虫,需要两个宿主,即人类和雌性按蚊。疾病通过受感染蚊子的叮咬传播给人类。目前还没有有效的疫苗来预防疟疾,但存在几种小分子治疗方案,如氯喹(CQ)和青蒿素。CQ曾经是疟疾治疗的中流砥柱,由于产生抗药性的突变,它已经失去了很大一部分疗效。迫切需要新的小分子药物,特别是那些研究新靶点的药物,这些药物可能不太容易产生获得性耐药性。PSAC是新近发现的一种重要的抗疟疾靶点,最近被基因鉴定实验所证实。该通道由寄生虫产生,并插入受感染的红细胞膜。最近的研究表明,通过高通量筛选发现的PSAC抑制剂可以通过直接作用于这一通道杀死寄生虫。在初步研究中,美国国立卫生研究院的Sanjay Desai博士利用山梨醇转运试验开发并应用了PSAC抑制剂的筛选,从而鉴定了几种在纳摩尔范围内显示抑制效力(K0.5 PSAC阻滞剂)的化学类型。化合物还抑制低微摩尔至低纳摩尔效力(IC50)的原生生物生长。选择了两种高效、低细胞毒性、易合成、体外“类药物”ADM结果良好的“HIT化合物”化学支架进行药物化学优化。第一个,E912-0081(MBX 2366)被指定为主要的支架,化学搜救工作将集中在这个支架上。第二个脚手架C791-0105已被选为备用脚手架,以防主要脚手架达不到目标1-3中规定的里程碑。第一阶段项目将专注于优化体外性质,如效力、溶解度和各种预测体内疗效的药代动力学参数,并导致鉴定一种先导化合物(S)。然后,最好的先导化合物抗疟疾PSAC抑制剂将进入第二阶段,进行体内药代动力学、毒理学和疗效研究。这种跨学科的方法将德赛博士的抗疟疾专业知识与MicroBiotix的抗感染研究和开发能力结合在一起,将为新发现的、基本的和保守的疟疾靶标生产抑制剂,并为耐药感染提供新的治疗选择。
公共卫生相关性:由疟原虫属寄生虫引起的人类疟疾每年困扰5亿人,并导致100万人死亡。尽管有治疗这种疾病的药物,但耐药性正在迅速侵蚀它们的疗效。我们建议开发新的抗疟疾治疗药物,目标是一种未被开发的疟疾阴离子通道蛋白,以对抗日益增长的耐药性问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michelle M. Butler其他文献
Midwifery education in Canada
- DOI:
10.1016/j.midw.2015.11.019 - 发表时间:
2016-02-01 - 期刊:
- 影响因子:
- 作者:
Michelle M. Butler;Eileen K. Hutton;Patricia S. McNiven - 通讯作者:
Patricia S. McNiven
Michelle M. Butler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michelle M. Butler', 18)}}的其他基金
Oxadiazole Inhibitors of Non-Stop Ribosome Rescue to treat MDR Neisseria gonorrhoeae
不间断核糖体救援恶二唑抑制剂治疗耐多药淋病奈瑟菌
- 批准号:
10231210 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Aminospectinomycin antibacterials for the treatment of antibiotic-resistant gonorrhea and other bacterial STDs
氨基大观霉素抗菌药用于治疗抗生素耐药性淋病和其他细菌性 STD
- 批准号:
9252872 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Novel Spectinamide Antibiotics for the Treatment of MDR/XDR Tuberculosis
用于治疗 MDR/XDR 结核病的新型 Spectinamide 抗生素
- 批准号:
8436177 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Novel spectinamide antibiotics for the treatment of MDR/XDR tuberculosis
用于治疗 MDR/XDR 结核病的新型大观酰胺抗生素
- 批准号:
8857368 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Novel spectinamide antibiotics for the treatment of MDR/XDR tuberculosis
用于治疗 MDR/XDR 结核病的新型大观酰胺抗生素
- 批准号:
8714556 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Novel Spectinamide Antibiotics for the Treatment of MDR/XDR Tuberculosis
用于治疗 MDR/XDR 结核病的新型 Spectinamide 抗生素
- 批准号:
10252947 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
- 批准号:
10062806 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Novel Spectinamide Antibiotics for the Treatment of MDR/XDR Tuberculosis
用于治疗 MDR/XDR 结核病的新型 Spectinamide 抗生素
- 批准号:
8250690 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
- 批准号:
8549102 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
- 批准号:
8832349 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
相似海外基金
ESE: Collaborative Research: Climate Change and Variability and Armed Conflicts in Africa South of the Sahara
ESE:合作研究:撒哈拉以南非洲的气候变化和变异性以及武装冲突
- 批准号:
0964515 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Network Dynamics, Sexual Behaviour, and HIV Among University Students in Africa South of the Sahara
撒哈拉以南非洲大学生的网络动态、性行为和艾滋病毒
- 批准号:
178094 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Studentship Programs
Synopsis of Ichneumoniae of Africa, South of the Sahara
撒哈拉以南非洲的姬蜂病简介
- 批准号:
66B2956 - 财政年份:1966
- 资助金额:
$ 30万 - 项目类别:
To Attend Synopsis of Ichneumoninae of Africa, South of the Sahara
参加撒哈拉以南非洲的姬蜂亚科概要
- 批准号:
65B2956 - 财政年份:1965
- 资助金额:
$ 30万 - 项目类别: