Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs

作为抗疟药物的新型疟原虫表面阴离子通道抑制剂

基本信息

  • 批准号:
    10062806
  • 负责人:
  • 金额:
    $ 98.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-21 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Summary/Abstract The overall objective of this project is to develop new, potent, selective antimalarials that act through a novel mechanism of blocking the plasmodial surface anion channel (PSAC), a previously unexploited and highly conserved plasmodial target. Human malaria is caused by five species of protozoan parasites in the genus Plasmodium. It is estimated that there are more than 200 million clinical cases of P. falciparum malaria and over 445,000 deaths annually, with the majority of the deaths occurring in sub-Saharan Africa. The malaria parasites, most importantly P. falciparum, require two hosts, which are humans and female Anopheles mosquitoes. Disease is transmitted to humans from the bite of an infected mosquito. There are no effective vaccines available to prevent malaria, but several small molecule treatment options exist, such as chloroquine (CQ) and artemisinin. CQ, once the mainstay of malaria treatment, has lost much of its efficacy because of mutations that confer resistance. Resistance to artemisinin-based therapy is now appearing in Southeast Asia. New small molecule drugs, especially those working on new targets that may be less susceptible to acquired resistance, are desperately needed. PSAC is a newly discovered essential antimalarial target which was validated by gene identification experiments. The channel is produced by the parasite and inserts into the infected erythrocyte membrane. It was demonstrated by Dr. Sanjay Desai, NIH, that PSAC inhibitors, discovered by high-throughput screening, kill parasites by direct action on this channel. In preliminary studies, Dr. Desai, developed and applied a screen for PSAC inhibitors using a sorbitol transport assay, that resulted in the identification of several chemotypes that displayed inhibitory potencies (K0.5 PSAC block) in the nanomolar range. Compounds also inhibited plasmodial growth with low nanomolar potencies (IC50). One of the “hit compound” chemical scaffolds were chosen for medicinal chemistry optimization based on their potency, low cytotoxicity, tractability of synthesis and overall favorable in vitro “drug-like” ADME results. The first, MBX 2366, was subjected to SAR evaluation in a Phase I SBIR project. Compounds in this series demonstrated efficacy, low toxicity and excellent in vitro ADME properties. The Phase II project focused on lead optimizing and scale-up chemistry as well as further mechanism of action studies and demonstrated good in vivo pharmacokinetics and toxicology studies and, notably, proof-of-concept efficacy in the humanized mouse model of P. falciparum infection. The proposed Phase IIB project will finalize compound optimization, including murine efficacy studies to be completed by Medicines for Malaria Venture (MMV), select a preclinical candidate and then conduct IND-enabling preclinical studies to advance a compound to the clinic. The preclinical candidate will be synthesized to a 1 Kg scale. The interdisciplinary approach, which will merge the antimalarial expertise of Dr. Desai and Dr. Jeremy Burrows of MMV with the anti-infective research and development capabilities of Microbiotix, will produce inhibitors for a novel, essential and conserved malarial target and provide new treatment options for resistant infections.
总结/摘要 该项目的总体目标是开发新的、有效的、选择性的抗疟药物, 阻断疟原虫表面阴离子通道(PSAC)的机制,这是一种以前未被利用的高度依赖性的阴离子通道。 保守的原质团靶标。人类疟疾是由五种原生动物寄生虫属 疟原虫据估计,全球恶性疟原虫疟疾的临床病例超过2亿, 每年有445,000人死亡,其中大多数死亡发生在撒哈拉以南非洲。疟疾寄生虫 最重要的是恶性疟原虫需要两个宿主,即人类和雌性按蚊。 疾病通过受感染的蚊子叮咬传播给人类。目前还没有有效的疫苗 目前,疟疾的治疗方法主要是预防疟疾,但也有几种小分子治疗方法,如氯喹(CQ)和青蒿素。 CQ曾经是疟疾治疗的主要药物,但由于基因突变, 阻力对青蒿素疗法的抗药性目前正在东南亚出现。新的小分子 药物,特别是那些致力于新靶点的药物,可能不易受到获得性耐药性的影响, 迫切需要的。PSAC是新发现的抗疟重要靶点,经基因验证 鉴定实验该通道由寄生虫产生并插入受感染的红细胞 膜的美国国立卫生研究院的Sanjay Desai博士证明,通过高通量技术发现的PSAC抑制剂 筛选,杀死寄生虫的直接行动在这个渠道。在初步研究中,德赛博士开发并应用了 使用山梨醇转运试验筛选PSAC抑制剂,结果鉴定了几种 在纳摩尔范围内显示抑制效力(K0.5 PSAC阻断)的化学型。化合物还 以低纳摩尔效力(IC 50)抑制疟原虫生长。“命中化合物”化学支架之一 根据它们的效价、低细胞毒性、合成的易处理性, 和总体有利的体外“药物样”ADME结果。第一个是MBX 2366,进行了SAR评价 第一阶段SBIR项目。该系列化合物在体外试验中表现出有效性、低毒性和优异的生物活性。 ADME属性。第二阶段项目的重点是铅优化和放大化学,以及进一步 作用机制研究,并证明了良好的体内药代动力学和毒理学研究, 值得注意的是,在恶性疟原虫感染的人源化小鼠模型中的概念验证功效。拟议 IIB期项目将最终确定化合物优化,包括小鼠疗效研究, 疟疾新药研发公司(MMV),选择临床前候选药物,然后进行IND启动临床前研究 将一种化合物推向临床的研究临床前候选药物将合成至1 Kg规模。的 跨学科的方法,这将合并德赛博士和杰里米博士伯罗斯的抗疟专业知识, MMV具有Microbiotix的抗感染研发能力,将产生抑制剂, 新的、必需的和保守的疟疾靶点,并为耐药感染提供新的治疗选择。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimized Pyridazinone Nutrient Channel Inhibitors Are Potent and Specific Antimalarial Leads.
  • DOI:
    10.1124/molpharm.122.000549
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Butler, Michelle M;Waidyarachchi, Samanthi L;Desai, Sanjay A
  • 通讯作者:
    Desai, Sanjay A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michelle M. Butler其他文献

Midwifery education in Canada
  • DOI:
    10.1016/j.midw.2015.11.019
  • 发表时间:
    2016-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michelle M. Butler;Eileen K. Hutton;Patricia S. McNiven
  • 通讯作者:
    Patricia S. McNiven

Michelle M. Butler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michelle M. Butler', 18)}}的其他基金

Oxadiazole Inhibitors of Non-Stop Ribosome Rescue to treat MDR Neisseria gonorrhoeae
不间断核糖体救援恶二唑抑制剂治疗耐多药淋病奈瑟菌
  • 批准号:
    10231210
  • 财政年份:
    2017
  • 资助金额:
    $ 98.25万
  • 项目类别:
Aminospectinomycin antibacterials for the treatment of antibiotic-resistant gonorrhea and other bacterial STDs
氨基大观霉素抗菌药用于治疗抗生素耐药性淋病和其他细菌性 STD
  • 批准号:
    9252872
  • 财政年份:
    2017
  • 资助金额:
    $ 98.25万
  • 项目类别:
Novel Spectinamide Antibiotics for the Treatment of MDR/XDR Tuberculosis
用于治疗 MDR/XDR 结核病的新型 Spectinamide 抗生素
  • 批准号:
    8436177
  • 财政年份:
    2012
  • 资助金额:
    $ 98.25万
  • 项目类别:
Novel spectinamide antibiotics for the treatment of MDR/XDR tuberculosis
用于治疗 MDR/XDR 结核病的新型大观酰胺抗生素
  • 批准号:
    8857368
  • 财政年份:
    2012
  • 资助金额:
    $ 98.25万
  • 项目类别:
Novel spectinamide antibiotics for the treatment of MDR/XDR tuberculosis
用于治疗 MDR/XDR 结核病的新型大观酰胺抗生素
  • 批准号:
    8714556
  • 财政年份:
    2012
  • 资助金额:
    $ 98.25万
  • 项目类别:
Novel Spectinamide Antibiotics for the Treatment of MDR/XDR Tuberculosis
用于治疗 MDR/XDR 结核病的新型 Spectinamide 抗生素
  • 批准号:
    10252947
  • 财政年份:
    2012
  • 资助金额:
    $ 98.25万
  • 项目类别:
Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
  • 批准号:
    8311901
  • 财政年份:
    2012
  • 资助金额:
    $ 98.25万
  • 项目类别:
Novel Spectinamide Antibiotics for the Treatment of MDR/XDR Tuberculosis
用于治疗 MDR/XDR 结核病的新型 Spectinamide 抗生素
  • 批准号:
    8250690
  • 财政年份:
    2012
  • 资助金额:
    $ 98.25万
  • 项目类别:
Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
  • 批准号:
    8549102
  • 财政年份:
    2012
  • 资助金额:
    $ 98.25万
  • 项目类别:
Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
  • 批准号:
    8832349
  • 财政年份:
    2012
  • 资助金额:
    $ 98.25万
  • 项目类别:

相似海外基金

CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
  • 批准号:
    2427215
  • 财政年份:
    2024
  • 资助金额:
    $ 98.25万
  • 项目类别:
    Standard Grant
Reactivity and photochemistry of halide anions: atmospheric implications
卤化物阴离子的反应性和光化学:大气影响
  • 批准号:
    DP240100612
  • 财政年份:
    2024
  • 资助金额:
    $ 98.25万
  • 项目类别:
    Discovery Projects
RUI: Characterizing Valence, Temporary, and Non-valence Anions: Computational Methods and Photo-detachment Spectroscopy
RUI:表征化合价、临时和非化合价阴离子:计算方法和光分离光谱
  • 批准号:
    2303652
  • 财政年份:
    2023
  • 资助金额:
    $ 98.25万
  • 项目类别:
    Continuing Grant
Novel Catalysis by Lewis Acid Weakly Coordinated Anions
路易斯酸弱配位阴离子的新型催化
  • 批准号:
    23KJ0761
  • 财政年份:
    2023
  • 资助金额:
    $ 98.25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Controlling Coordination Octahedral Rotation and Inducing Ferroelectricity in Layered Perovskite Oxides with Intercalated Anions
插层阴离子层状钙钛矿氧化物中控制配位八面体旋转并诱导铁电性
  • 批准号:
    23H01869
  • 财政年份:
    2023
  • 资助金额:
    $ 98.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Effects of mixed anions and passivation on perovskite solar cells fabricated by vapor-phase deposition
混合阴离子和钝化对气相沉积钙钛矿太阳能电池的影响
  • 批准号:
    23K04656
  • 财政年份:
    2023
  • 资助金额:
    $ 98.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RUI: Post-synthetic transformations of anions in metal chalcogenide nanoparticles: Uncovering synthetic design rules and the effect on subsequent transformations
RUI:金属硫族化物纳米颗粒中阴离子的合成后转化:揭示合成设计规则以及对后续转化的影响
  • 批准号:
    2312618
  • 财政年份:
    2023
  • 资助金额:
    $ 98.25万
  • 项目类别:
    Standard Grant
Donor-Stabilized Fluorido Cations and New Tungsten-Based Weakly Coordinating Anions
供体稳定的氟阳离子和新型钨基弱配位阴离子
  • 批准号:
    RGPIN-2022-03698
  • 财政年份:
    2022
  • 资助金额:
    $ 98.25万
  • 项目类别:
    Discovery Grants Program - Individual
CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
  • 批准号:
    2208744
  • 财政年份:
    2022
  • 资助金额:
    $ 98.25万
  • 项目类别:
    Standard Grant
CAS-Climate:Collaborative Research:Understanding How Electrochemical Cation Trapping in Metal Oxides Enhances Subsequent Reversible Insertion of Anions in Forming Metal Oxyhalides
CAS-气候:合作研究:了解金属氧化物中的电化学阳离子捕获如何增强随后形成金属卤氧化物时阴离子的可逆插入
  • 批准号:
    2221646
  • 财政年份:
    2022
  • 资助金额:
    $ 98.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了