Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
基本信息
- 批准号:10062806
- 负责人:
- 金额:$ 98.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-21 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:Africa South of the SaharaAnionsAnopheles GenusAnti-Infective AgentsAntimalarialsArtemisininsBioavailableBiochemicalBiological AssayBiological AvailabilityBiologyBlood CirculationCanis familiarisCause of DeathCellsCessation of lifeChemicalsChemistryChloroquineChromosome MappingClinicClinicalClinical TrialsCollaborationsCombined Modality TherapyCulicidaeCytolysisDNADangerousnessDevelopmentDiseaseDisease ResistanceDrug CombinationsDrug KineticsDrug resistanceElectrophysiology (science)Erythrocyte MembraneEvaluationFalciparum MalariaFemaleFormulationFutureGenerationsGenesGeneticGeographyGoalsGrowthHalf-LifeHourHumanHuman BitesIn VitroInfectionLiver MicrosomesMalariaMalaria VaccinesMammalian CellMeasuresMediatingMedicineModelingMolecularMusMutationNational Institute of Allergy and Infectious DiseaseOralParasite resistanceParasitesPharmaceutical ChemistryPharmaceutical PreparationsPharmacology StudyPhasePlasmodiumPlasmodium falciparumPlasmodium ovalePlasmodium vivaxPropertyProteinsPublishingRattusReportingResistanceRouteSafetySeriesSerumSmall Business Innovation Research GrantSolubilitySorbitolSoutheastern AsiaSurfaceTherapeuticTherapeutic IndexTimeToxic effectToxicologyTransfectionUnited States National Institutes of HealthVaccinesanalogbasechemical synthesisclinical candidateclinical developmentcombatcostcytotoxicitydesignefficacy studyexperimental studyextracellularhigh throughput screeninghuman femalehumanized mouseimprovedin vivoinhibitor/antagonistinterdisciplinary approachlead optimizationlead seriesmouse modelnanomolarnovelpatch clamppre-clinicalpreclinical developmentpreclinical studypreventprotein complexresearch and developmentresistance mechanismresistance mutationscaffoldscale upscreeningsmall moleculetargeted treatmentuptakevaccine access
项目摘要
Summary/Abstract
The overall objective of this project is to develop new, potent, selective antimalarials that act through a novel
mechanism of blocking the plasmodial surface anion channel (PSAC), a previously unexploited and highly
conserved plasmodial target. Human malaria is caused by five species of protozoan parasites in the genus
Plasmodium. It is estimated that there are more than 200 million clinical cases of P. falciparum malaria and over
445,000 deaths annually, with the majority of the deaths occurring in sub-Saharan Africa. The malaria parasites,
most importantly P. falciparum, require two hosts, which are humans and female Anopheles mosquitoes.
Disease is transmitted to humans from the bite of an infected mosquito. There are no effective vaccines available
to prevent malaria, but several small molecule treatment options exist, such as chloroquine (CQ) and artemisinin.
CQ, once the mainstay of malaria treatment, has lost much of its efficacy because of mutations that confer
resistance. Resistance to artemisinin-based therapy is now appearing in Southeast Asia. New small molecule
drugs, especially those working on new targets that may be less susceptible to acquired resistance, are
desperately needed. PSAC is a newly discovered essential antimalarial target which was validated by gene
identification experiments. The channel is produced by the parasite and inserts into the infected erythrocyte
membrane. It was demonstrated by Dr. Sanjay Desai, NIH, that PSAC inhibitors, discovered by high-throughput
screening, kill parasites by direct action on this channel. In preliminary studies, Dr. Desai, developed and applied
a screen for PSAC inhibitors using a sorbitol transport assay, that resulted in the identification of several
chemotypes that displayed inhibitory potencies (K0.5 PSAC block) in the nanomolar range. Compounds also
inhibited plasmodial growth with low nanomolar potencies (IC50). One of the “hit compound” chemical scaffolds
were chosen for medicinal chemistry optimization based on their potency, low cytotoxicity, tractability of synthesis
and overall favorable in vitro “drug-like” ADME results. The first, MBX 2366, was subjected to SAR evaluation
in a Phase I SBIR project. Compounds in this series demonstrated efficacy, low toxicity and excellent in vitro
ADME properties. The Phase II project focused on lead optimizing and scale-up chemistry as well as further
mechanism of action studies and demonstrated good in vivo pharmacokinetics and toxicology studies and,
notably, proof-of-concept efficacy in the humanized mouse model of P. falciparum infection. The proposed
Phase IIB project will finalize compound optimization, including murine efficacy studies to be completed by
Medicines for Malaria Venture (MMV), select a preclinical candidate and then conduct IND-enabling preclinical
studies to advance a compound to the clinic. The preclinical candidate will be synthesized to a 1 Kg scale. The
interdisciplinary approach, which will merge the antimalarial expertise of Dr. Desai and Dr. Jeremy Burrows of
MMV with the anti-infective research and development capabilities of Microbiotix, will produce inhibitors for a
novel, essential and conserved malarial target and provide new treatment options for resistant infections.
摘要/摘要
该项目的总体目标是开发新的、有效的、选择性的抗疟药,通过新颖的机制发挥作用。
阻断疟原虫表面阴离子通道(PSAC)的机制,这是一种以前未开发的且高度
保守的疟原虫靶标。人类疟疾是由该属的五种原生动物寄生虫引起的
疟原虫。据估计,恶性疟临床病例超过2亿例及以上
每年有 445,000 人死亡,其中大部分死亡发生在撒哈拉以南非洲地区。疟疾寄生虫,
最重要的是,恶性疟原虫需要两个宿主,即人类和雌性按蚊。
疾病通过受感染的蚊子叮咬传播给人类。没有有效的疫苗
预防疟疾,但存在几种小分子治疗选择,例如氯喹 (CQ) 和青蒿素。
CQ 曾经是疟疾治疗的中流砥柱,但由于突变导致其失去了大部分功效。
反抗。东南亚目前正在出现对青蒿素疗法的耐药性。新型小分子
药物,特别是那些作用于可能不易受到获得性耐药性的新靶点的药物,
迫切需要。 PSAC是新发现的重要抗疟靶标,并已通过基因验证
鉴定实验。该通道由寄生虫产生并插入受感染的红细胞
膜。 NIH 的 Sanjay Desai 博士证明,PSAC 抑制剂是通过高通量发现的
通过直接作用于该通道来筛选、杀死寄生虫。在初步研究中,德赛博士开发并应用了
使用山梨醇转运测定筛选PSAC抑制剂,结果鉴定了几种
在纳摩尔范围内表现出抑制效力(K0.5 PSAC 块)的化学型。化合物也
以低纳摩尔效力 (IC50) 抑制疟原虫生长。 “热门化合物”化学支架之一
基于其效力、低细胞毒性、合成的易处理性而被选择进行药物化学优化
以及总体良好的体外“类药物”ADME 结果。第一个MBX 2366接受了SAR评估
在第一阶段 SBIR 项目中。该系列化合物在体外表现出高效、低毒和优异的性能
ADME 属性。第二阶段项目的重点是先导化合物优化和放大化学以及进一步
作用机制研究并证明了良好的体内药代动力学和毒理学研究,
值得注意的是,在恶性疟原虫感染的人源化小鼠模型中进行了概念验证。拟议的
IIB 期项目将完成化合物优化,包括将于 2017 年完成的小鼠功效研究
Medicines for Malaria Venture (MMV),选择临床前候选药物,然后进行支持 IND 的临床前研究
将化合物推向临床的研究。临床前候选药物将被合成至 1 公斤规模。这
跨学科方法,将融合 Desai 博士和 Jeremy Burrows 博士的抗疟专业知识
MMV 凭借 Microbiotix 的抗感染研发能力,将生产用于
新颖、重要且保守的疟疾靶标,并为耐药感染提供新的治疗选择。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimized Pyridazinone Nutrient Channel Inhibitors Are Potent and Specific Antimalarial Leads.
- DOI:10.1124/molpharm.122.000549
- 发表时间:2022-09-01
- 期刊:
- 影响因子:3.6
- 作者:Butler, Michelle M;Waidyarachchi, Samanthi L;Desai, Sanjay A
- 通讯作者:Desai, Sanjay A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michelle M. Butler其他文献
Midwifery education in Canada
- DOI:
10.1016/j.midw.2015.11.019 - 发表时间:
2016-02-01 - 期刊:
- 影响因子:
- 作者:
Michelle M. Butler;Eileen K. Hutton;Patricia S. McNiven - 通讯作者:
Patricia S. McNiven
Michelle M. Butler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michelle M. Butler', 18)}}的其他基金
Oxadiazole Inhibitors of Non-Stop Ribosome Rescue to treat MDR Neisseria gonorrhoeae
不间断核糖体救援恶二唑抑制剂治疗耐多药淋病奈瑟菌
- 批准号:
10231210 - 财政年份:2017
- 资助金额:
$ 98.25万 - 项目类别:
Aminospectinomycin antibacterials for the treatment of antibiotic-resistant gonorrhea and other bacterial STDs
氨基大观霉素抗菌药用于治疗抗生素耐药性淋病和其他细菌性 STD
- 批准号:
9252872 - 财政年份:2017
- 资助金额:
$ 98.25万 - 项目类别:
Novel Spectinamide Antibiotics for the Treatment of MDR/XDR Tuberculosis
用于治疗 MDR/XDR 结核病的新型 Spectinamide 抗生素
- 批准号:
8436177 - 财政年份:2012
- 资助金额:
$ 98.25万 - 项目类别:
Novel spectinamide antibiotics for the treatment of MDR/XDR tuberculosis
用于治疗 MDR/XDR 结核病的新型大观酰胺抗生素
- 批准号:
8857368 - 财政年份:2012
- 资助金额:
$ 98.25万 - 项目类别:
Novel spectinamide antibiotics for the treatment of MDR/XDR tuberculosis
用于治疗 MDR/XDR 结核病的新型大观酰胺抗生素
- 批准号:
8714556 - 财政年份:2012
- 资助金额:
$ 98.25万 - 项目类别:
Novel Spectinamide Antibiotics for the Treatment of MDR/XDR Tuberculosis
用于治疗 MDR/XDR 结核病的新型 Spectinamide 抗生素
- 批准号:
10252947 - 财政年份:2012
- 资助金额:
$ 98.25万 - 项目类别:
Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
- 批准号:
8549102 - 财政年份:2012
- 资助金额:
$ 98.25万 - 项目类别:
Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
- 批准号:
8832349 - 财政年份:2012
- 资助金额:
$ 98.25万 - 项目类别:
Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
- 批准号:
8311901 - 财政年份:2012
- 资助金额:
$ 98.25万 - 项目类别:
Novel Spectinamide Antibiotics for the Treatment of MDR/XDR Tuberculosis
用于治疗 MDR/XDR 结核病的新型 Spectinamide 抗生素
- 批准号:
8250690 - 财政年份:2012
- 资助金额:
$ 98.25万 - 项目类别:
相似海外基金
CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
- 批准号:
2427215 - 财政年份:2024
- 资助金额:
$ 98.25万 - 项目类别:
Standard Grant
Reactivity and photochemistry of halide anions: atmospheric implications
卤化物阴离子的反应性和光化学:大气影响
- 批准号:
DP240100612 - 财政年份:2024
- 资助金额:
$ 98.25万 - 项目类别:
Discovery Projects
RUI: Characterizing Valence, Temporary, and Non-valence Anions: Computational Methods and Photo-detachment Spectroscopy
RUI:表征化合价、临时和非化合价阴离子:计算方法和光分离光谱
- 批准号:
2303652 - 财政年份:2023
- 资助金额:
$ 98.25万 - 项目类别:
Continuing Grant
Novel Catalysis by Lewis Acid Weakly Coordinated Anions
路易斯酸弱配位阴离子的新型催化
- 批准号:
23KJ0761 - 财政年份:2023
- 资助金额:
$ 98.25万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Controlling Coordination Octahedral Rotation and Inducing Ferroelectricity in Layered Perovskite Oxides with Intercalated Anions
插层阴离子层状钙钛矿氧化物中控制配位八面体旋转并诱导铁电性
- 批准号:
23H01869 - 财政年份:2023
- 资助金额:
$ 98.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
RUI: Post-synthetic transformations of anions in metal chalcogenide nanoparticles: Uncovering synthetic design rules and the effect on subsequent transformations
RUI:金属硫族化物纳米颗粒中阴离子的合成后转化:揭示合成设计规则以及对后续转化的影响
- 批准号:
2312618 - 财政年份:2023
- 资助金额:
$ 98.25万 - 项目类别:
Standard Grant
Effects of mixed anions and passivation on perovskite solar cells fabricated by vapor-phase deposition
混合阴离子和钝化对气相沉积钙钛矿太阳能电池的影响
- 批准号:
23K04656 - 财政年份:2023
- 资助金额:
$ 98.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
- 批准号:
2208744 - 财政年份:2022
- 资助金额:
$ 98.25万 - 项目类别:
Standard Grant
Donor-Stabilized Fluorido Cations and New Tungsten-Based Weakly Coordinating Anions
供体稳定的氟阳离子和新型钨基弱配位阴离子
- 批准号:
RGPIN-2022-03698 - 财政年份:2022
- 资助金额:
$ 98.25万 - 项目类别:
Discovery Grants Program - Individual
CAS-Climate:Collaborative Research:Understanding How Electrochemical Cation Trapping in Metal Oxides Enhances Subsequent Reversible Insertion of Anions in Forming Metal Oxyhalides
CAS-气候:合作研究:了解金属氧化物中的电化学阳离子捕获如何增强随后形成金属卤氧化物时阴离子的可逆插入
- 批准号:
2221646 - 财政年份:2022
- 资助金额:
$ 98.25万 - 项目类别:
Standard Grant














{{item.name}}会员




