Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
基本信息
- 批准号:8832349
- 负责人:
- 金额:$ 64.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-21 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAfrica South of the SaharaAnionsAnopheles GenusAnti-Infective AgentsAntimalarialsArtemisininsBioavailableBiochemicalBiological AssayBiological AvailabilityCause of DeathCellsCessation of lifeChemicalsChemistryChloroquineChromosome MappingClinicalCombined Modality TherapyCulicidaeCytolysisDNADevelopmentDiseaseDisease ResistanceDrug CombinationsDrug KineticsDrug resistanceErythrocyte MembraneEvaluationFalciparum MalariaFamilyFemaleGenesGeneticGoalsGrowthHalf-LifeHourHumanHuman BitesIn VitroInfectionInhibitory Concentration 50LeadLiver MicrosomesMalariaMalaria VaccinesMammalian CellMeasuresMediatingMedicineModelingMolecularMusMutationOralParasitesPermeabilityPharmaceutical ChemistryPharmaceutical PreparationsPhasePhysiologicalPlasmodiumPlasmodium falciparumPoisonPreparationPropertyProtein IsoformsProteinsPublishingReceptor InhibitionResistanceRouteSeriesSmall Business Innovation Research GrantSolubilitySorbitolSoutheastern AsiaStructureSurfaceTherapeutic AgentsTherapeutic IndexTimeToxic effectToxicologyTransfectionUnited States National Institutes of HealthVaccinesWorkanalogaqueousartemisininebasechannel blockerschemical synthesiscombatcostcytotoxicitydesignefficacy testingextracellulargenotoxicityhigh throughput screeninghuman femalehumanized SCID mouseimprovedin vitro Assayin vivoindexinginhibitor/antagonistinterdisciplinary approachkillingsmeetingsmouse modelnovelpatch clamppre-clinicalpreclinical studypreventpublic health relevanceresearch and developmentresearch studyresistance mechanismresistance mutationscaffoldscale upscreeningsmall moleculeuptake
项目摘要
DESCRIPTION (provided by applicant): The overall objective of this project is to generate new, potent, selective antimalarials that act through a novel mechanism of blocking the plasmodial surface anion channel (PSAC), a previously unexploited and highly conserved plasmodial target. Human malaria is caused by five species of protozoan parasites in the genus Plasmodium. It is estimated that there are more than 200 million clinical cases of P. falciparum malaria and over 600,000 deaths annually, with ninety percent of the deaths occurring in sub-Saharan Africa. The malaria parasites, most importantly P. falciparum, require two hosts, which are humans and female Anopheles mosquitoes. Disease is transmitted to humans from the bite of an infected mosquito. There are no effective vaccines available to prevent malaria, but several small molecule treatment options exist, such as chloroquine (CQ) and artemisinin. CQ, once the mainstay of malaria treatment, has lost much of its efficacy because of mutations that confer resistance. Resistance to artemisinin-based therapy is now appearing in Southeast Asia. New small molecule drugs, especially those working on new targets that may be less susceptible to acquired resistance, are desperately needed. PSAC is a newly discovered essential antimalarial target which was recently validated by gene identification experiments. The channel is produced by the parasite and inserts into the infected erythrocyte membrane. It was demonstrated by Dr. Sanjay Desai, NIH, that PSAC inhibitors, discovered by high-throughput screening, kill parasites by direct action on this channel. In preliminary studies, Dr. Desai, developed and applied a screen for PSAC inhibitors using a sorbitol transport assay, which resulted in the identification of several chemotypes that displayed inhibitory potencies (K0.5 PSAC block) in the nanomolar range. Compounds also inhibited plasmodial growth with low nanomolar potencies (IC50). Two of the "hit compound" chemical scaffolds were chosen for medicinal chemistry optimization on the basis of their potency, low cytotoxicity, tractability of synthesis and overall favorable in vitro "drug-like" ADME results. The first, MBX 2366, was subjected to SAR evaluation in a Phase I SBIR project. Compounds in this series demonstrated efficacy, low toxicity and excellent in vitro ADME properties. The Phase II project proposed here will focus on lead optimizing and scale-up chemistry, further mechanism of action studies and then in vivo pharmacokinetics and toxicology studies in preparation for efficacy testing. We will test the efficacy of prioritized compounds in the humanized SCID mouse model, to be conducted by Medicines for Malaria Venture (MMV). In Phase III, we will conduct IND-enabling preclinical studies to advance several of the most potent and least toxic compounds from the MBX 2366 scaffold. The interdisciplinary approach, which will merge the antimalarial expertise of Dr. Desai and Dr. Jeremy Burrows of MMV with the anti-infective research and development capabilities of Microbiotix, will produce inhibitors for a newly discovered, essential and conserved malarial target and provide new treatment options for resistant infections.
描述(由申请人提供):该项目的总体目的是生成新的,有效的选择性抗疟药,这些抗疟药通过阻断质地表面阴离子通道(PSAC)的新型机制,这是一种先前未开发和高度保守的质体靶标。人类疟疾是由质子属中五种原生动物寄生虫引起的。据估计,每年有超过2亿个恶性疟原虫疟疾的临床病例,每年有60万人死亡,其中百分之九十的死亡发生在撒哈拉以南非洲。疟疾寄生虫,最重要的是恶性疟原虫,需要两个宿主,它们是人类和雌性蚊子蚊子。疾病是从感染蚊子的咬伤中传播给人类的。没有可预防疟疾的有效疫苗,但是存在几种小分子治疗方案,例如氯喹(CQ)和青蒿素。 CQ曾经是疟疾治疗的主要手段,由于赋予抗性的突变,因此失去了许多功效。目前,基于青蒿素的疗法的抗药性正在东南亚出现。迫切需要新的小分子药物,尤其是那些从事可能不易获得抵抗力的新目标的药物。 PSAC是一个新发现的基本抗疟疾靶标,最近通过基因鉴定实验验证了。该通道是由寄生虫产生的,并将其插入感染的红细胞膜中。 NIH的Sanjay Desai博士证明,通过高通量筛查发现的PSAC抑制剂,通过该渠道的直接行动杀死寄生虫。在初步研究中,Desai博士使用山梨糖醇转运测定法开发并应用了PSAC抑制剂的筛选,这导致鉴定出在纳摩尔范围内显示出抑制性势力(K0.5 PSAC块)的几种化学型。化合物还抑制低纳摩尔势力(IC50)的质量生长。根据其效力,低细胞毒性,合成的障碍和整体有利的体外“类似药物样” ADME结果,选择了两个“命中化合物”化学支架进行药物化学优化。第一个MBX 2366在I期SBIR项目中进行了SAR评估。该系列中的化合物表现出功效,低毒性和出色的体外ADME特性。此处提出的II期项目将重点介绍铅优化和扩展化学,进一步的作用研究机理,然后在体内药代动力学和毒理学研究中进行效果测试。我们将在人源化SCID小鼠模型中测试优先化合物的功效,该模型将由药物进行疟疾风险(MMV)进行。在第三阶段中,我们将进行成分的临床前研究,以从MBX 2366支架中推进几种最有效,最不毒的化合物。跨学科方法将融合Desai博士和MMV的Jeremy Burrows博士的抗疟疾专业知识与微生物群的抗感染研究和开发能力,将为新发现,必不可少的和保守的疟疾靶标生成抑制剂,并为抵抗感染提供新的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michelle M. Butler其他文献
Midwifery education in Canada
- DOI:
10.1016/j.midw.2015.11.019 - 发表时间:
2016-02-01 - 期刊:
- 影响因子:
- 作者:
Michelle M. Butler;Eileen K. Hutton;Patricia S. McNiven - 通讯作者:
Patricia S. McNiven
Michelle M. Butler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michelle M. Butler', 18)}}的其他基金
Oxadiazole Inhibitors of Non-Stop Ribosome Rescue to treat MDR Neisseria gonorrhoeae
不间断核糖体救援恶二唑抑制剂治疗耐多药淋病奈瑟菌
- 批准号:
10231210 - 财政年份:2017
- 资助金额:
$ 64.35万 - 项目类别:
Aminospectinomycin antibacterials for the treatment of antibiotic-resistant gonorrhea and other bacterial STDs
氨基大观霉素抗菌药用于治疗抗生素耐药性淋病和其他细菌性 STD
- 批准号:
9252872 - 财政年份:2017
- 资助金额:
$ 64.35万 - 项目类别:
Novel Spectinamide Antibiotics for the Treatment of MDR/XDR Tuberculosis
用于治疗 MDR/XDR 结核病的新型 Spectinamide 抗生素
- 批准号:
8436177 - 财政年份:2012
- 资助金额:
$ 64.35万 - 项目类别:
Novel spectinamide antibiotics for the treatment of MDR/XDR tuberculosis
用于治疗 MDR/XDR 结核病的新型大观酰胺抗生素
- 批准号:
8857368 - 财政年份:2012
- 资助金额:
$ 64.35万 - 项目类别:
Novel spectinamide antibiotics for the treatment of MDR/XDR tuberculosis
用于治疗 MDR/XDR 结核病的新型大观酰胺抗生素
- 批准号:
8714556 - 财政年份:2012
- 资助金额:
$ 64.35万 - 项目类别:
Novel Spectinamide Antibiotics for the Treatment of MDR/XDR Tuberculosis
用于治疗 MDR/XDR 结核病的新型 Spectinamide 抗生素
- 批准号:
10252947 - 财政年份:2012
- 资助金额:
$ 64.35万 - 项目类别:
Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
- 批准号:
10062806 - 财政年份:2012
- 资助金额:
$ 64.35万 - 项目类别:
Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
- 批准号:
8549102 - 财政年份:2012
- 资助金额:
$ 64.35万 - 项目类别:
Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
- 批准号:
8311901 - 财政年份:2012
- 资助金额:
$ 64.35万 - 项目类别:
Novel Spectinamide Antibiotics for the Treatment of MDR/XDR Tuberculosis
用于治疗 MDR/XDR 结核病的新型 Spectinamide 抗生素
- 批准号:
8250690 - 财政年份:2012
- 资助金额:
$ 64.35万 - 项目类别:
相似国自然基金
撒哈拉以南非洲植物多样性的时空格局和保护
- 批准号:32370217
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
- 批准号:
10062806 - 财政年份:2012
- 资助金额:
$ 64.35万 - 项目类别:
Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
- 批准号:
8311901 - 财政年份:2012
- 资助金额:
$ 64.35万 - 项目类别:
Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
- 批准号:
8549102 - 财政年份:2012
- 资助金额:
$ 64.35万 - 项目类别:
Ion transport and motility in larval mosquito stomach
蚊子幼虫胃中的离子运输和运动
- 批准号:
7849524 - 财政年份:2006
- 资助金额:
$ 64.35万 - 项目类别:
Ion transport and motility in larval mosquito stomach
蚊子幼虫胃中的离子运输和运动
- 批准号:
7433292 - 财政年份:2006
- 资助金额:
$ 64.35万 - 项目类别: