Development of flow and vascular quantification software for the assessment of MR

开发用于评估 MR 的流量和血管量化软件

基本信息

项目摘要

DESCRIPTION (provided by applicant): There has been a huge increase in demand for comprehensive quantitative analysis of neurovascular imaging data produced in the clinical setting for diseases such as multiple sclerosis, traumatic brain injury, stroke and dementia. Our objective in this project is to design and develop advanced image processing software that can rapidly and accurately analyze such data. To achieve this objective, we propose a range of novel algorithms to process data from the following MR imaging sequences widely used in the aforementioned applications: time resolved 3D contrast enhanced MR angiography (CE-MRA) for the assessment of vascular anatomy, time resolved 2D phase contrast flow imaging (PC-MRI) for the evaluation of vascular hemodynamics, susceptibility weighted imaging (SWI) for quantifying iron deposition in the brain, and fluid attenuated inversion recovery (FLAIR) imaging for the detection of white matter hyperintensities (WMH) and lesions. A variety of tools will be designed and implemented to tackle these problems including: tissue similarity mapping and active shape models to segment the vasculature in both CE-MRA and PC-MRI images; automatic tissue segmentation in the basal ganglia and thalamus for a two-region of interest analysis for iron quantification with SWI; and finally adaptive approaches incorporating fuzzy C-means, shape factor analysis, compactness and fractional anisotropy to quantify lesions and WMHs. To exploit the advantages provided by different imaging sequences, co-registration algorithms will be used to improve segmentation of vessels between CE-MRA and PC-MRI, and between 3D T1 weighted imaging and SWI. Upon finishing this project, we expect a multi-fold increase in processing efficiency and a significant increase in accuracy will be achieved. The resulting software will not only help the growth of our company, but also improve the diagnosis and treatment of neurovascular diseases.
描述(由申请人提供):对多发性硬化、创伤性脑损伤、中风和痴呆等疾病的临床环境中产生的神经血管成像数据进行全面定量分析的需求大幅增加。我们在这个项目中的目标是设计和开发先进的图像处理软件,可以快速,准确地分析这些数据。为了实现这一目标,我们提出了一系列新颖的算法来处理来自在上述应用中广泛使用的以下MR成像序列的数据:时间分辨3D对比增强MR血管造影术(CE-MRA)用于评估血管解剖结构,时间分辨2D相位对比血流成像(PC-MRI)用于评价血管血流动力学,磁敏感加权成像(SWI)用于定量脑内铁沉积,液体衰减反转恢复(FLAIR)成像用于检测白色高信号(WMH)和病变。将设计和实施各种工具来解决这些问题,包括:组织相似性映射和主动形状模型,以分割CE-MRA和PC-MRI图像中的血管系统;基底节和丘脑中的自动组织分割,用于SWI铁定量的两个感兴趣区域分析;最后,自适应方法结合模糊C均值,形状因子分析,紧凑性和分数各向异性量化病变和WMH。为了利用不同成像序列提供的优势,将使用共配准算法来改善CE-MRA和PC-MRI之间以及3D T1加权成像和SWI之间的血管分割。在完成这个项目后,我们预计将实现处理效率的成倍提高和准确性的显着提高。由此产生的软件不仅有助于我们公司的发展,还将改善神经血管疾病的诊断和治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ewart Mark Haacke其他文献

Strategically acquired gradient echo (STAGE)-derived MR angiography might be a superior alternative method to time-of-flight MR angiography in visualization of leptomeningeal collaterals
在软脑膜侧枝可视化方面,策略性梯度回波 (STAGE) 衍生的 MR 血管造影可能是飞行时间 MR 血管造影的更好替代方法
  • DOI:
    10.1007/s00330-020-06840-7
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Ruowei Tang;Qingqing Zhang;Yongsheng Chen;Song Liu;Ewart Mark Haacke;Bin-ge Chang;Shuang Xia
  • 通讯作者:
    Shuang Xia

Ewart Mark Haacke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ewart Mark Haacke', 18)}}的其他基金

ACQUIRING A 3T PRISMA FOR NEUROSCIENCE RESEARCH AT WSU
为 WSU 的神经科学研究购买 3T PRISMA
  • 批准号:
    10430689
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Automatic Quantification and Labeling of Cerebral Microbleeds, Oxygen Saturation and Sources of Abnormal Susceptibility
脑微出血、氧饱和度和异常易感性来源的自动定量和标记
  • 批准号:
    10026456
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
Assessing Brain Tissue Viability after TBI: A Susceptibility Mapping Approach
评估 TBI 后脑组织的活力:敏感性图谱方法
  • 批准号:
    8970279
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
Development of flow and vascular quantification software for the assessment of MR
开发用于评估 MR 的流量和血管量化软件
  • 批准号:
    8626440
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
Development of flow and vascular quantification software for the assessment of MR
开发用于评估 MR 的流量和血管量化软件
  • 批准号:
    8369059
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
Evaluation of New Imaging Methodologies at 7T
7T 新成像方法的评估
  • 批准号:
    7125717
  • 财政年份:
    2007
  • 资助金额:
    $ 50万
  • 项目类别:
HIGH RESOLUTION BOLD VENOGRAPHIC IMAGING
高分辨率大胆静脉造影成像
  • 批准号:
    6537615
  • 财政年份:
    2001
  • 资助金额:
    $ 50万
  • 项目类别:
Susceptibility Weighted Imaging (SWI)
磁敏感加权成像 (SWI)
  • 批准号:
    7681615
  • 财政年份:
    2001
  • 资助金额:
    $ 50万
  • 项目类别:
Susceptibility Weighted Imaging (SWI)
磁敏感加权成像 (SWI)
  • 批准号:
    7900005
  • 财政年份:
    2001
  • 资助金额:
    $ 50万
  • 项目类别:
HIGH RESOLUTION BOLD VENOGRAPHIC IMAGING
高分辨率大胆静脉造影成像
  • 批准号:
    6286243
  • 财政年份:
    2001
  • 资助金额:
    $ 50万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了