INTRACELLULAR LIFESTYLE OF PSEUDOMONAS AERUGINOSA
铜绿假单胞菌的细胞内生活方式
基本信息
- 批准号:8391254
- 负责人:
- 金额:$ 35.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-12-05 至 2014-11-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsAntibioticsAutophagocytosisBacteriaBiological AssayBullaBurn injuryCell Culture TechniquesCell membraneCellsCessation of lifeContact LensesCorneaCorneal DiseasesCystic FibrosisCytoplasmCytosolDataDetectionDiffusionDiseaseEpithelialEpithelial CellsEventExhibitsExocytosisEyeEye InfectionsGenesHumanImageImmunocompromised HostImmunohistochemistryIn VitroIncidenceIndividualInfectionInjuryLAMP3 geneLifeLife StyleLysosomesMembraneMethodsMicroscopyModelingMolecularNeedlesOutcome MeasurePathogenesisPathway interactionsPatientsPlayPopulationPseudomonas aeruginosaPublishingResearchResistanceRoleSeverity of illnessSiteSkinSurfaceSwimmingSystemTestingTimeTissuesType III Secretion System PathwayVacuoleVirulenceVisionabstractingcell motilitycell typechildren with cystic fibrosiscorneal epitheliumin vivoinhibitor/antagonistkillingslate endosomemutantnovelnovel strategiesoutcome forecastpathogenpublic health relevanceresidencetime usetrafficking
项目摘要
Project Summary/Abstract
Pseudomonas aeruginosa can cause severe sight- and life-threatening disease. Epithelial lined surface tissues
such as the eye, the skin and the airways are the most commonly targeted sites. Susceptible populations
include children with cystic fibrosis, immunocompromised individuals, burn victims, intubated patients, and
contact lens wearers. The incidence of P. aeruginosa infection is rising; worrisome given that it is often highly
destructive and associated with a poor prognosis. P. aeruginosa infection is notoriously difficult to treat using
available therapies, in part because P. aeruginosa possesses a large number of genes devoted to survival and
adaptation. Thus, new approaches to therapy are urgently needed. While it is known that P. aeruginosa can
enter epithelial cells during infection, and that cell invasion can be a key component in pathogenesis, little is
known about the intracellular lifestyle of P. aeruginosa within any cell type. The objective of this research is
to understand intracellular survival strategies used by P. aeruginosa and to determine if they can be
targeted to reduce virulence in vivo in an eye infection model. Preliminary data reveal that P. aeruginosa
occupies a novel intracellular niche within epithelial cells; infection-induced plasma membrane blebs. In these
blebs, bacteria replicate and demonstrate rapid (real-time visible) motility. The data show that the Type Three
Secretion System (T3SS) is required for bleb-niche formation by P. aeruginosa. T3SS mutants fail to form
blebs and instead localize to perinuclear vacuoles. In contrast to wild type bacteria, T3SS mutants (retain
competency for invasion) lose viability after entering epithelial cells. The T3SS effectors and the translocon
required for transporting T3SS effectors across host cell membranes both play roles in P. aeruginosa
intracellular survival/trafficking. Effector mutants and translocon mutants each lack blebbing capacity and traffic
to preinuclear vacuoles, however, only effector mutants lose capacity for intracellular replication. Thus, the
data suggest at least two roles for the T3SS in intracellular survival; 1) effector-dependent intracellular
replication in perinuclear vacuoles, and 2) translocon-dependent bleb niche formation. The hypotheses to be
tested are: Aim 1: That in the absence of T3SS effectors, P. aeruginosa is degraded within lysosomes, but
specific T3SS effectors manipulate endocytic trafficking to enable survival in perinculear vacuoles. Aim 2: That
the T3SS participates in bleb-niche formation by enabling bacterial escape from vacuolar compartments
(translocon-dependent) and that there are also direct roles for the T3SS in bleb formation/trafficking to them.
Aim 3: That intracellular survival in vivo is also T3SS-dependent, and can be targeted to manipulate virulence.
Aims 1 and 2 will involve in vitro cell culture infection methods, bacterial mutants, viability assays and imaging
used with and without inhibitors/activators of molecular events. Aim 3 will be done using a well-established in
vivo corneal infection model, methods from aims 1 and 2, and quantification of bacterial colonization and of
disease severity.
项目摘要/摘要
铜绿假单胞菌可导致严重的危及视力和生命的疾病。上皮衬里表面组织
如眼睛、皮肤和呼吸道是最常见的靶点。易感人群
包括囊性纤维化儿童、免疫功能低下者、烧伤患者、插管患者以及
隐形眼镜佩戴者。铜绿假单胞菌感染的发生率正在上升;令人担忧的是,它往往很高
破坏性的,与不良预后相关的。众所周知,铜绿假单胞菌感染很难使用
可用的治疗方法,部分是因为铜绿假单胞菌拥有大量致力于生存和
适应。因此,迫切需要新的治疗方法。虽然我们知道铜绿假单胞菌可以
在感染过程中进入上皮细胞,细胞侵袭可能是致病过程中的一个关键组成部分,但很少是
已知铜绿假单胞菌在任何细胞类型中的细胞内生活方式。这项研究的目的是
了解铜绿假单胞菌使用的细胞内生存策略,并确定它们是否可以
目的是在眼部感染模型中降低体内的毒力。初步数据显示,铜绿假单胞菌
在上皮细胞内占据一个新的细胞内生态位;感染诱导的质膜气泡。在这些
气泡、细菌复制并表现出快速(实时可见)运动。数据显示,第三类
分泌系统(T3SS)是铜绿假单胞菌形成小泡-生态位所必需的。T3SS突变体未能形成
而不是定位于核周液泡。与野生型细菌相比,T3SS突变体(保留
侵袭能力)进入上皮细胞后丧失活力。T3SS效应器和易位子
运输T3SS效应物穿过宿主细胞膜所需的两种物质在铜绿假单胞菌中都发挥作用
细胞内生存/贩运。效应子突变体和转位突变体都缺乏气泡能力和通信量
然而,对于核前空泡,只有效应突变体失去了细胞内复制的能力。因此,
数据表明T3SS在细胞内存活中至少有两个作用:1)细胞内依赖效应器
核周空泡中的复制,以及2)转运子依赖的小泡生态位的形成。假设是
测试如下:目标1:在没有T3SS效应器的情况下,铜绿假单胞菌在溶酶体中被降解,但
特定的T3SS效应器操纵细胞内转运,使其能够在胚泡周围的空泡中存活。目标2:
T3SS通过使细菌从空泡室逃逸来参与泡龛的形成
(转运子依赖),并且T3SS在水泡的形成/向它们贩运中也有直接作用。
目的3:体内细胞内存活也是T3SS依赖的,可以作为调控毒力的靶点。
AIMS 1和2将涉及体外细胞培养感染方法、细菌突变体、活性分析和成像。
与分子事件的抑制剂/激活剂一起使用和不与其一起使用。目标3将使用一个成熟的
活体角膜感染模型,AIMS 1和2的方法,以及细菌定植和
疾病的严重性。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suzanne MJ FLEISZIG其他文献
Suzanne MJ FLEISZIG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suzanne MJ FLEISZIG', 18)}}的其他基金
Contact Lens Wear, Bacteria, and Corneal Homeostasis
隐形眼镜佩戴、细菌和角膜稳态
- 批准号:
9762535 - 财政年份:2019
- 资助金额:
$ 35.35万 - 项目类别:
Contact Lens Wear, Bacteria, and Corneal Homeostasis
隐形眼镜佩戴、细菌和角膜稳态
- 批准号:
9920709 - 财政年份:2019
- 资助金额:
$ 35.35万 - 项目类别:
Contact Lens Wear, Bacteria, and Corneal Homeostasis
隐形眼镜佩戴、细菌和角膜稳态
- 批准号:
10610842 - 财政年份:2019
- 资助金额:
$ 35.35万 - 项目类别:
Contact Lens Wear, Bacteria, and Corneal Homeostasis
隐形眼镜佩戴、细菌和角膜稳态
- 批准号:
10396524 - 财政年份:2019
- 资助金额:
$ 35.35万 - 项目类别:
INTRACELLULAR LIFESTYLE OF PSEUDOMONAS AERUGINOSA
铜绿假单胞菌的细胞内生活方式
- 批准号:
7616052 - 财政年份:2008
- 资助金额:
$ 35.35万 - 项目类别:
INTRACELLULAR LIFESTYLE OF PSEUDOMONAS AERUGINOSA
铜绿假单胞菌的细胞内生活方式
- 批准号:
7994835 - 财政年份:2008
- 资助金额:
$ 35.35万 - 项目类别:
INTRACELLULAR LIFESTYLE OF PSEUDOMONAS AERUGINOSA
铜绿假单胞菌的细胞内生活方式
- 批准号:
7743826 - 财政年份:2008
- 资助金额:
$ 35.35万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 35.35万 - 项目类别:
Studentship
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 35.35万 - 项目类别:
Research Grant
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 35.35万 - 项目类别:
Research Grant
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 35.35万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 35.35万 - 项目类别:
ARC Future Fellowships
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 35.35万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 35.35万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 35.35万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 35.35万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 35.35万 - 项目类别:
Studentship