Nonparametric methods for functional and translational genomics
功能和翻译基因组学的非参数方法
基本信息
- 批准号:8532014
- 负责人:
- 金额:$ 10.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-17 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnimal Disease ModelsAnimal ModelAreaAutomobile DrivingAwardBase PairingBiochemicalBiologicalBiological AssayBiological ModelsBiological ProcessCellsChIP-seqCommunicationComplementary DNAComplexDataData AnalysesData SourcesDevelopmentDevelopmental BiologyDisease modelElementsGap JunctionsGene DeletionGenesGenomeGenomicsGoalsHumanHuman BiologyIndiumIndividualLeadLinkMapsMeasuresMentorsMethodsMetricModelingMolecularMutationOrphanOrthologous GenePathway AnalysisPharmaceutical PreparationsPhenotypePlayProblem SolvingPropertyProtein IsoformsRNAReadingResearchResearch PersonnelRunningSemanticsSystemTechniquesTechnologyToxic effectTrainingTraining ActivityTranscriptTranscriptional RegulationVariantWeightanalogbasecareer developmentdesigndriving forceexperiencefunctional genomicshigh throughput screeninghuman diseasenetwork modelsnext generation sequencingnovel strategiesstatisticsstem cell biologytheoriestooltranscription factortranscriptome sequencing
项目摘要
DESCRIPTION (provided by applicant): Next generation sequencing has revealed the molecular landscape of cells in unprecedented detail. However, for the massively large-scale data produced by assays based on these technologies, informativeness is not only a function of wet-lab technology, but is critically also a function of the analytical pipelines that interpret th data. Our group has developed four statistical tools designed maximize the informativeness of these assays: 1) the Genome Structural Correction (GSC), a nonparametric model of genomic annotations used to assess the significance of relationships between features; 2) the Irreproducible Discovery Rate (IDR), an analogue of the FDR that leverages information from biological replicates; 3) Statmap, a comprehensive analysis pipeline for ChIP-seq and CAGE data that propagates statistical confidence from base-calling to peak-calling; and 4) Sparse Linear Isoform Discovery and abundance Estimation (SLIDE), an integrative statistical framework for the analysis of RNA-seq, cDNA, and other RNA data aimed at obtaining and quantifying de novo transcript models. These tools are designed to identify and characterize functional elements in genomes; they make minimal assumptions about the data they analyze, and therefore draw reliable conclusions and measures of statistical confidence. During the K99, we will expand and integrate our tools to extend the reach of statistical confidence throughout data interpretation. During the R00, my research will progress toward the inference and assessment of biological networks. Just as ortholog identification has become an essential step in developing animal models of human disease, multi-species network analysis promises to become a key step in interpreting the relationship between genome variation and phenotype. Many mutations, even gene deletions, do not reveal an obvious phenotype. This is due to network robustness, which often differs between closely related species. To understand these phenomena, we aim to: 1) develop standard statistical tools for network inference, and 2) develop "meta models" of networks that will permit general measures of network orthology. These two aims are tightly linked: we will need critically to characterize the semantics of biological networks to model them. Currently, some models lack consistent definitions of edges and weights, resulting in untestable representations of genomics data. We will develop testable, quantitative models of biological processes, establishing a uniform semantics leveraging the rich theory of complex systems. Each of the tools above will play a key role, especially Statmap and the GSC, which will be needed to propagate statistical confidence into network analysis. Advances will have a transformative effect on our ability to map animal models of disease onto human biology. Nearly nine out of ten new drugs fail in human trials due to issues (e.g. toxicity) not present in animal models. Understanding the orthology not just of individual genes, but of entire biochemical networks will be essential to infer and correct for differences between models of disease and human biology. Solving this problem will be a major step forward in the march from "base-pairs to bedside".
描述(由申请人提供):下一代测序以前所未有的细节揭示了细胞的分子景观。然而,对于基于这些技术的分析产生的大规模数据,信息量不仅是湿实验室技术的功能,而且也是解释数据的分析管道的功能。我们的团队已经开发了四种统计工具,旨在最大限度地提高这些检测的信息量:1)基因组结构校正(GSC),一种用于评估特征之间关系的重要性的基因组注释的非参数模型; 2)不可重复的发现率(IDR),一种利用生物复制信息的FDR类似物; 3)Statmap,用于ChIP-seq和CAGE数据的综合分析管道,其将统计置信度从碱基调用传播到峰值调用;和4)稀疏线性异构体发现和丰度估计(SLIDE),用于分析RNA-seq,cDNA,和其他RNA数据,旨在获得和定量从头转录模型。这些工具旨在识别和表征基因组中的功能元件;它们对所分析的数据做出最小的假设,从而得出可靠的结论和统计置信度。在K99期间,我们将扩展和整合我们的工具,以扩展整个数据解释过程中统计置信度的范围。在R 00期间,我的研究将朝着生物网络的推断和评估方向发展。正如直系同源物鉴定已成为开发人类疾病动物模型的重要步骤一样,多物种网络分析有望成为解释基因组变异和表型之间关系的关键步骤。许多突变,甚至是基因缺失,并不显示明显的表型。这是由于网络的鲁棒性,这通常在密切相关的物种之间存在差异。为了理解这些现象,我们的目标是:1)开发网络推理的标准统计工具,以及2)开发网络的“Meta模型”,允许对网络正交性进行一般测量。这两个目标是紧密相连的:我们将需要严格地描述生物网络的语义来对其进行建模。目前,一些模型缺乏一致的边和权重定义,导致基因组学数据的不可测试的表示。我们将开发生物过程的可测试的定量模型,利用复杂系统的丰富理论建立统一的语义。上述工具中的每一个都将发挥关键作用,特别是Statmap和GSC,它们将需要将统计置信度传播到网络分析中。这些进展将对我们将疾病的动物模型映射到人类生物学的能力产生变革性影响。近十分之九的新药在人体试验中失败,原因是动物模型中不存在的问题(例如毒性)。不仅要理解单个基因的同源性,还要理解整个生物化学网络的同源性,这对于推断和纠正疾病模型与人类生物学模型之间的差异至关重要。解决这个问题将是从“碱基对到床边”的重要一步。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression.
- DOI:10.1101/gr.132159.111
- 发表时间:2012-09
- 期刊:
- 影响因子:7
- 作者:Derrien T;Johnson R;Bussotti G;Tanzer A;Djebali S;Tilgner H;Guernec G;Martin D;Merkel A;Knowles DG;Lagarde J;Veeravalli L;Ruan X;Ruan Y;Lassmann T;Carninci P;Brown JB;Lipovich L;Gonzalez JM;Thomas M;Davis CA;Shiekhattar R;Gingeras TR;Hubbard TJ;Notredame C;Harrow J;Guigó R
- 通讯作者:Guigó R
Long noncoding RNAs are rarely translated in two human cell lines.
- DOI:10.1101/gr.134767.111
- 发表时间:2012-09
- 期刊:
- 影响因子:7
- 作者:Bánfai B;Jia H;Khatun J;Wood E;Risk B;Gundling WE Jr;Kundaje A;Gunawardena HP;Yu Y;Xie L;Krajewski K;Strahl BD;Chen X;Bickel P;Giddings MC;Brown JB;Lipovich L
- 通讯作者:Lipovich L
Classification of human genomic regions based on experimentally determined binding sites of more than 100 transcription-related factors.
- DOI:10.1186/gb-2012-13-9-r48
- 发表时间:2012-09-26
- 期刊:
- 影响因子:12.3
- 作者:Yip KY;Cheng C;Bhardwaj N;Brown JB;Leng J;Kundaje A;Rozowsky J;Birney E;Bickel P;Snyder M;Gerstein M
- 通讯作者:Gerstein M
ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia.
- DOI:10.1101/gr.136184.111
- 发表时间:2012-09
- 期刊:
- 影响因子:7
- 作者:Landt SG;Marinov GK;Kundaje A;Kheradpour P;Pauli F;Batzoglou S;Bernstein BE;Bickel P;Brown JB;Cayting P;Chen Y;DeSalvo G;Epstein C;Fisher-Aylor KI;Euskirchen G;Gerstein M;Gertz J;Hartemink AJ;Hoffman MM;Iyer VR;Jung YL;Karmakar S;Kellis M;Kharchenko PV;Li Q;Liu T;Liu XS;Ma L;Milosavljevic A;Myers RM;Park PJ;Pazin MJ;Perry MD;Raha D;Reddy TE;Rozowsky J;Shoresh N;Sidow A;Slattery M;Stamatoyannopoulos JA;Tolstorukov MY;White KP;Xi S;Farnham PJ;Lieb JD;Wold BJ;Snyder M
- 通讯作者:Snyder M
Promoter analysis reveals globally differential regulation of human long non-coding RNA and protein-coding genes.
启动子分析揭示了人类长的非编码RNA和蛋白质编码基因的全球差异调节。
- DOI:10.1371/journal.pone.0109443
- 发表时间:2014
- 期刊:
- 影响因子:3.7
- 作者:Alam T;Medvedeva YA;Jia H;Brown JB;Lipovich L;Bajic VB
- 通讯作者:Bajic VB
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Bentley Brown其他文献
James Bentley Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Bentley Brown', 18)}}的其他基金
Nonparametric methods for functional and translational genomics
功能和翻译基因组学的非参数方法
- 批准号:
8916814 - 财政年份:2014
- 资助金额:
$ 10.3万 - 项目类别:
Nonparametric methods for functional and translational genomics
功能和翻译基因组学的非参数方法
- 批准号:
8280729 - 财政年份:2012
- 资助金额:
$ 10.3万 - 项目类别:
相似海外基金
Investigating how TRAF1 Controls Inflammasome Activation in Animal Disease Models of Inflammatory Arthritis and Peritonitis
研究 TRAF1 如何控制炎症性关节炎和腹膜炎动物疾病模型中的炎症小体激活
- 批准号:
449429 - 财政年份:2020
- 资助金额:
$ 10.3万 - 项目类别:
Studentship Programs
Establishment of animal disease models for intractable pediatric diseases due to defects of RNA metabolism and development of new therapeutics
RNA代谢缺陷引起的儿科疑难疾病动物模型的建立及新疗法的开发
- 批准号:
20H03644 - 财政年份:2020
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Functional analysis of type 2 diabetes susceptibility genes using animal disease models
利用动物疾病模型对2型糖尿病易感基因进行功能分析
- 批准号:
18K08466 - 财政年份:2018
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cell therapy of adipocytes derived from human iPS cells using cellcontainers and animal disease models
使用细胞容器和动物疾病模型对源自人类 iPS 细胞的脂肪细胞进行细胞治疗
- 批准号:
24659444 - 财政年份:2012
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Analysis of genes involved in the pathogenesis of the arthritis using animal disease models..
使用动物疾病模型分析涉及关节炎发病机制的基因。
- 批准号:
17500284 - 财政年份:2005
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ESTABLISHMENT OF THE DEVELOPING AND SUPPLING SYSTEMS FOR NEW ANIMAL,DISEASE MODELS FROM SUBSPECIES OF THE MOUSE
小鼠亚种新动物、疾病模型的开发和供应体系的建立
- 批准号:
07556128 - 财政年份:1995
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for Scientific Research (A)