Biocomputation across distributed private datasets to enhance drug discovery
跨分布式私有数据集的生物计算以增强药物发现
基本信息
- 批准号:8590552
- 负责人:
- 金额:$ 46.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-16 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsArchivesBiological AssayBiotechnologyCellsChemical StructureChemistryCollaborationsComputer AnalysisComputer SimulationComputer softwareDataData CollectionData SetDescriptorDevelopmentDiseaseEnsureEventExhibitsFoundationsGovernmentInfectious Diseases ResearchInhibitory Concentration 50InvestmentsLaboratoriesLeadLibrariesMalariaModelingMycobacterium tuberculosisOnline SystemsPharmaceutical PreparationsPharmacologic SubstancePhasePrivacyPropertyPsyche structurePubChemQuantitative Structure-Activity RelationshipRare DiseasesResearchResearch InstituteResearch PersonnelResourcesScientistSeriesSmall Business Innovation Research GrantSourceSystemTechnologyTest ResultTimeTrainingTuberculosisValidationVendorVisionWorkbasecomputerized toolscytotoxicitydata sharingdrug discoveryexpectationimprovedneglectnovelopen sourcepre-clinicalprospectiveprototypepublic health relevancerepositoryresearch studyscreeningsuccesstooltuberculosis drugsvirtual
项目摘要
DESCRIPTION: Collaborative Drug Discovery, Inc. (CDD) will create a novel web-based software platform that enables scientists to work together effectively to discover and improve new drug leads by sharing computational predictions based on open-source descriptors and models, for the first time without needing to reveal underlying chemical structures and biodata. It
will create the first practical system of bio computational analysis across distributed datasets with different owners, while respecting data privacy. By lowering this key barrier to collaboration the platform will accelerate the pre-clinical drug discovery pipeline. Research aimed at neglected diseases and orphan indications will especially benefit, because they often rely on the loosely affiliated efforts of academic investigators, non-profit foundations, government laboratories, and small biotechnology firms ("extra-pharma" entities). Such efforts typically lack not only the resources but also the integrated workflows of discovery projects conducted at large pharmaceutical companies (within which data can be shared freely across departments). The project will for the first time enable researchers focused on neglected diseases and orphan indications to effectively exploit bio computational tools such as virtual screening and ADME/Tox predictions, which are now considered to be standard and indispensible components of early discovery workflows within large pharma. It will also make it easier for these extra-pharma researchers to collaborate with large pharma and benefit from large pharma's significant investment accumulating large high-quality datasets. In Phase II of this SBIR project, CDD will: 1. Create a stand-alone platform, based entirely on open source technologies, that enables researchers to share models, share predictions from models, and create models from distributed, heterogeneous QSAR data - all without needing to divulge the underlying training sets. 2. Develop approaches that enable scientists who are not computational chemists to exploit the technology. A series of user interfaces will automate and intelligently guide the user to create or exploit models and assist the user to visualize domains of applicability, interpret results, and understand their limitations. The integrated platforms will enable scientists to seamlessly create, share and execute computational models leveraging private data vaults, with or without sharing the underlying training data. 3. Validate the platform by (a) developing a suite
of at least five ADME/Tox and physicochemical property models based on open-source descriptors and data obtained from commercial ADME vendors, as well as public data from PubChem, ChEMBL and other sources, (b) securely making available a series of sophisticated pre- competitive ADME/Tox models provided by large pharmaceutical companies, and (c) demonstrating that col- laboratory can utilize the platform on their own (without relying on a computational chemist) to discover and advance TB drug leads with good ADME/Tox properties.
名称:Collaborative Drug Discovery,Inc. (CDD)将创建一个新的基于网络的软件平台,使科学家能够有效地合作,通过共享基于开源描述符和模型的计算预测,首次发现和改进新药先导,而无需揭示潜在的化学结构和生物数据。它
将创建第一个跨不同所有者的分布式数据集进行生物计算分析的实用系统,同时尊重数据隐私。通过降低这一合作的关键障碍,该平台将加速临床前药物发现管道。针对被忽视的疾病和孤儿适应症的研究将特别受益,因为它们通常依赖于学术研究人员、非营利基金会、政府实验室和小型生物技术公司(“非制药”实体)的松散联系。这些努力通常不仅缺乏资源,而且缺乏大型制药公司开展的发现项目的综合工作流程(其中数据可以在各部门之间自由共享)。该项目将首次使专注于被忽视疾病和孤儿适应症的研究人员能够有效地利用生物计算工具,如虚拟筛选和ADME/Tox预测,这些工具现在被认为是大型制药公司早期发现工作流程的标准和不可或缺的组成部分。它还将使这些非制药研究人员更容易与大型制药公司合作,并从大型制药公司积累大型高质量数据集的重大投资中受益。在SBIR项目的第二阶段,CDD将:1。创建一个完全基于开源技术的独立平台,使研究人员能够共享模型、共享模型预测以及从分布式、异构QSAR数据创建模型-所有这些都无需泄露底层训练集。2.开发方法,使科学家谁不是计算化学家利用技术。一系列的用户界面将自动化和智能地引导用户创建或利用模型,并帮助用户可视化适用性领域,解释结果并了解其局限性。集成平台将使科学家能够利用私有数据库无缝创建、共享和执行计算模型,无论是否共享底层训练数据。3.通过(a)开发一个套件
至少五种ADME/Tox和物理化学性质模型,其基于开源描述符和从商业ADME供应商获得的数据,以及来自PubChem、ChEMBL和其他来源的公开数据,(B)安全地提供由大型制药公司提供的一系列复杂的竞争前ADME/Tox模型,以及(c)证明合作实验室可以自己利用该平台(不依赖于计算化学家)来发现和推进具有良好ADME/Tox性质的TB药物先导物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SEAN EKINS其他文献
SEAN EKINS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SEAN EKINS', 18)}}的其他基金
Preclinical development of a Nipah Virus inhibitor
尼帕病毒抑制剂的临床前开发
- 批准号:
10761349 - 财政年份:2023
- 资助金额:
$ 46.29万 - 项目类别:
New therapeutic approaches to identifying molecules for opioid abuse treatment
识别阿片类药物滥用分子的新治疗方法
- 批准号:
10385998 - 财政年份:2022
- 资助金额:
$ 46.29万 - 项目类别:
Machine learning approaches to predict Acetylcholinesterase inhibition
预测乙酰胆碱酯酶抑制的机器学习方法
- 批准号:
10378934 - 财政年份:2021
- 资助金额:
$ 46.29万 - 项目类别:
MegaTox for analyzing and visualizing data across different screening systems
MegaTox 用于分析和可视化不同筛选系统的数据
- 批准号:
10094026 - 财政年份:2020
- 资助金额:
$ 46.29万 - 项目类别:
MegaTox for analyzing and visualizing data across different screening systems
MegaTox 用于分析和可视化不同筛选系统的数据
- 批准号:
10470050 - 财政年份:2019
- 资助金额:
$ 46.29万 - 项目类别:
MegaTox for analyzing and visualizing data across different screening systems
MegaTox 用于分析和可视化不同筛查系统的数据
- 批准号:
10674729 - 财政年份:2019
- 资助金额:
$ 46.29万 - 项目类别:
MegaTrans – human transporter machine learning models
MegaTrans — 人类运输机机器学习模型
- 批准号:
9768844 - 财政年份:2019
- 资助金额:
$ 46.29万 - 项目类别:
MegaPredict for predicting natural product uses and their drug interactions
MegaPredict 用于预测天然产物用途及其药物相互作用
- 批准号:
10055938 - 财政年份:2019
- 资助金额:
$ 46.29万 - 项目类别:
Manufacture of an intracerebroventricular Enzyme Replacement Therapy for CLN1 Batten Disease
CLN1巴顿病脑室内酶替代疗法的研制
- 批准号:
10483470 - 财政年份:2018
- 资助金额:
$ 46.29万 - 项目类别:
Manufacture of an intracerebroventricular Enzyme Replacement Therapy for CLN1 Batten Disease
CLN1巴顿病脑室内酶替代疗法的研制
- 批准号:
10641950 - 财政年份:2018
- 资助金额:
$ 46.29万 - 项目类别:
相似海外基金
Sediment Drilling Facility for environmental and genetic archives
环境和遗传档案沉积物钻探设施
- 批准号:
LE240100064 - 财政年份:2024
- 资助金额:
$ 46.29万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Aerial Archives of Race and American-Occupied Japan
种族和美国占领的日本的航空档案
- 批准号:
24K03721 - 财政年份:2024
- 资助金额:
$ 46.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Understanding biosphere-geosphere coevolution through carbonate-associated phosphate, community archives, and open-access education in rural schools
职业:通过碳酸盐相关磷酸盐、社区档案和农村学校的开放教育了解生物圈-地圈协同进化
- 批准号:
2338055 - 财政年份:2024
- 资助金额:
$ 46.29万 - 项目类别:
Continuing Grant
Designing a Bridging Model Using Learning Content Information LOD to Link School Education and Digital Archives
使用学习内容信息 LOD 设计桥接模型来链接学校教育和数字档案
- 批准号:
23H03695 - 财政年份:2023
- 资助金额:
$ 46.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Doris Lessing's Archives: Communism, Decolonisation and Literary Practice
多丽丝·莱辛档案:共产主义、非殖民化和文学实践
- 批准号:
2888789 - 财政年份:2023
- 资助金额:
$ 46.29万 - 项目类别:
Studentship
Building a sustainable future for anthropology's archives: Researching primary source data lifecycles, infrastructures, and reuse
为人类学档案构建可持续的未来:研究主要源数据生命周期、基础设施和重用
- 批准号:
2314762 - 财政年份:2023
- 资助金额:
$ 46.29万 - 项目类别:
Standard Grant
Reading Writing Lives: Publishing & Preserving Australian Literary Archives
阅读写作生活:出版
- 批准号:
DP230101797 - 财政年份:2023
- 资助金额:
$ 46.29万 - 项目类别:
Discovery Projects
Integrated High-Definition Visualization of Digital Archives for Borobudur Temple
婆罗浮屠寺数字档案集成高清可视化
- 批准号:
22KJ3026 - 财政年份:2023
- 资助金额:
$ 46.29万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Research on multilingual data integration for digital archives of Japanese culture
日本文化数字档案多语言数据集成研究
- 批准号:
23K11780 - 财政年份:2023
- 资助金额:
$ 46.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Preliminary Study for Constructing International Network of Image Archives on Afghan Cultural Heritages
构建阿富汗文化遗产国际图像档案网络的初步研究
- 批准号:
23K00915 - 财政年份:2023
- 资助金额:
$ 46.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)