Quantifying Electronic Medical Record Usability to Improve Clinical Workflow

量化电子病历可用性以改善临床工作流程

基本信息

  • 批准号:
    8440222
  • 负责人:
  • 金额:
    $ 49.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): We propose to conduct a prospective clinical study to understand how clinical work is actually done in outpatient clinics that use EMRs, and to explore associations between EMR usage, workflow, physician-patient communication, cognitive load, and user satisfaction. The proposed study will use an observational prospective design consistent with the knowledge discovery goals of the project. The study will be conducted in the outpatient clinics at VA San Diego and at University of California San Diego (UCSD) Healthcare System. Within the outpatient arena, we will study 2 use case scenarios (primary care clinics and medical specialty clinics). We propose to recruit and study 32 providers and 192 patients (6 unique patient visits/provider) across 2 sites. A multifaceted and complementary data collection schema is proposed to study EMR usability, workflow, communication, and cognitive load. EMR user-interface activity, including mouse-click events and screen activity, will be logged via usability software. Videos will be temporally coded for communication and workflow behaviors. Surveys will be used to measure satisfaction and cognitive load. The analysis consists of development of a range of process-level quantitative measures and indicators of EMR usage, clinical workflow, and provider-patient communication. We will link data on EMR use and clinical work to develop composite models of EMR usability, clinical workflow, and provider's cognitive load and will explore associations between these indicators across study sites (UCSD and VA), provider types (Primary and Specialty), patient visits, and EMRs (CPRS and EPIC) while accounting for important covariates. The present study will provide a comprehensive assessment of usability, workflow, communication, and cognitive load. This critical knowledge can inform the development of the next generation of user-centered EMRs, hence improving clinical performance and effectiveness. PUBLIC HEALTH RELEVANCE: The project addresses the need for basic research to understand how Electronic Medical Record (EMR) technology is used in outpatient clinical consultations. The project will perform detailed analyses of EMR- related tasks, physician-patient communication, physicians' cognitive load, and patient and physician satisfaction. The project is directly related to AHRQ's major area of interest # 1: The nature of clinical work in context - "understanding how clinical work is done, how it could be done, and how the context in which work is carried out affects both tasks and information needs". We believe our proposal is in line with AHRQ's mission to improve the quality, safety, efficiency, and effectiveness of healthcare for all Americans.
描述(由申请人提供):我们建议进行一项前瞻性临床研究,以了解使用电子病历的门诊诊所如何实际完成临床工作,并探索电子病历使用、工作流程、医患沟通、认知负荷和用户满意度之间的关系。拟议的研究将采用与项目的知识发现目标一致的观察性前瞻性设计。该研究将在VA圣地亚哥和加州大学圣地亚哥分校(UCSD)医疗保健系统的门诊诊所进行。在门诊领域,我们将研究2个用例场景(初级保健诊所和医学专科诊所)。我们建议在2个地点招募和研究32名提供者和192名患者(6次单独的患者就诊/提供者)。提出了一种多面互补的数据收集模式来研究EMR的可用性、工作流程、通信和认知负荷。EMR用户界面活动,包括鼠标点击事件和屏幕活动,将通过可用性软件进行记录。视频将临时编码为通信和工作流行为。调查将用于测量满意度和认知负荷。该分析包括开发一系列流程级定量测量和电子病历使用指标、临床工作流程和提供者-患者沟通。我们将把EMR使用和临床工作的数据联系起来,以开发EMR可用性、临床工作流程和提供者认知负荷的复合模型,并将探索这些指标在研究地点(UCSD和VA)、提供者类型(初级和专科)、患者就诊和EMR (CPRS和EPIC)之间的关联,同时考虑重要的共变量。本研究将提供可用性、工作流程、沟通和认知负荷的综合评估。这些关键知识可以为下一代以用户为中心的电子病历的开发提供信息,从而提高临床表现和有效性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ZIA AGHA其他文献

ZIA AGHA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ZIA AGHA', 18)}}的其他基金

Design and Evaluation of User Centered Electronic Health Records
以用户为中心的电子健康记录的设计和评估
  • 批准号:
    8785548
  • 财政年份:
    2015
  • 资助金额:
    $ 49.09万
  • 项目类别:
Design and Evaluation of User Centered Electronic Health Records
以用户为中心的电子健康记录的设计和评估
  • 批准号:
    10176567
  • 财政年份:
    2015
  • 资助金额:
    $ 49.09万
  • 项目类别:
Design and Evaluation of User Centered Electronic Health Records
以用户为中心的电子健康记录的设计和评估
  • 批准号:
    10178091
  • 财政年份:
    2015
  • 资助金额:
    $ 49.09万
  • 项目类别:
Quantifying Electronic Medical Record Usability to Improve Clinical Workflow
量化电子病历可用性以改善临床工作流程
  • 批准号:
    8537916
  • 财政年份:
    2012
  • 资助金额:
    $ 49.09万
  • 项目类别:
Quantifying Electronic Medical Record Usability to Improve Clinical Workflow
量化电子病历可用性以改善临床工作流程
  • 批准号:
    8875631
  • 财政年份:
    2012
  • 资助金额:
    $ 49.09万
  • 项目类别:
Quantifying Electronic Medical Record Usability to Improve Clinical Workflow
量化电子病历可用性以改善临床工作流程
  • 批准号:
    8665456
  • 财政年份:
    2012
  • 资助金额:
    $ 49.09万
  • 项目类别:

相似海外基金

Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
  • 批准号:
    10748859
  • 财政年份:
    2024
  • 资助金额:
    $ 49.09万
  • 项目类别:
Development and clinical application of AI model to support diagnosis of dementia using medical big data from electronic medical records
利用电子病历中的医疗大数据支持痴呆症诊断的人工智能模型的开发和临床应用
  • 批准号:
    22KJ3211
  • 财政年份:
    2023
  • 资助金额:
    $ 49.09万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Research on clinical knowledge extraction infrastructure using real-world data derived from electronic medical records
使用电子病历中的真实数据提取临床知识基础设施的研究
  • 批准号:
    23K17001
  • 财政年份:
    2023
  • 资助金额:
    $ 49.09万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
  • 批准号:
    10678108
  • 财政年份:
    2023
  • 资助金额:
    $ 49.09万
  • 项目类别:
Optimizing Cancer Prediction in Ontario: Leveraging Electronic Medical Records and Machine Learning for Early Detection
优化安大略省的癌症预测:利用电子病历和机器学习进行早期检测
  • 批准号:
    494938
  • 财政年份:
    2023
  • 资助金额:
    $ 49.09万
  • 项目类别:
    Operating Grants
Integration of electronic medical records and neighborhood contextual indicators into machine learning strategies for identifying pregnant individuals at risk of depression in underserved communities
将电子病历和社区背景指标整合到机器学习策略中,以识别服务欠缺社区中面临抑郁风险的孕妇
  • 批准号:
    10741143
  • 财政年份:
    2023
  • 资助金额:
    $ 49.09万
  • 项目类别:
Real-World Molecularly Targeted Treatment Registry (MaTTeR): a Pilot Study to Enrich CCDI Data Utilizing Directed Electronic Medical Record (EMR) Extraction
真实世界分子靶向治疗登记处 (MaTTeR):利用定向电子病历 (EMR) 提取丰富 CCDI 数据的试点研究
  • 批准号:
    10878384
  • 财政年份:
    2023
  • 资助金额:
    $ 49.09万
  • 项目类别:
Efforts for standardization of electronic medical care process using OAT unit
使用 OAT 单元实现电子医疗流程标准化的努力
  • 批准号:
    23K09527
  • 财政年份:
    2023
  • 资助金额:
    $ 49.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Improving patient safety and hospital hygiene through the efficient and accurate identification of patients with antimicrobial resistant organisms (AROs) using clinical support tools in electronic medical records
使用电子病历中的临床支持工具高效、准确地识别抗菌药物耐药微生物 (ARO) 患者,提高患者安全和医院卫生
  • 批准号:
    478042
  • 财政年份:
    2023
  • 资助金额:
    $ 49.09万
  • 项目类别:
    Operating Grants
Using artificial intelligence to derive data on the social determinants of health from electronic medical records
使用人工智能从电子病历中获取有关健康的社会决定因素的数据
  • 批准号:
    479885
  • 财政年份:
    2023
  • 资助金额:
    $ 49.09万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了