Mechanobiology of Matrix Production by Corneal Fibroblasts
角膜成纤维细胞基质产生的力学生物学
基本信息
- 批准号:8539623
- 负责人:
- 金额:$ 36.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-02-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:ArchitectureAscorbic AcidBasic ScienceBehaviorBehavior ControlBeliefBioreactorsCellsChemistryCicatrixClinical TrialsCollagenCollagen FibrilCollagen Type IIIConnective TissueCorneaCorneal InjuryCorneal StromaCuesCustomDepositionDevelopmentEpigenetic ProcessExtracellular MatrixFibroblastsGoalsGrowthHumanImageImplantIn SituInvadedInvestigationKnowledgeLeadLifeMechanicsMesenchymalNatural regenerationNeural CrestOutputPaperPatternPhysiologic Intraocular PressurePlayProcessProductionRefractoryReportingResearch PersonnelResolutionRoleSeriesSignal TransductionStretchingSystemTestingThickTissue EngineeringTissuesWeight-Bearing stateWorkWound Healingbasecell motilitycellular imagingconnective tissue developmentcrosslinkdesignfollow-upinsightmigrationnovel strategiesprospectiveregenerativerepairedresponsescaffoldself organizationsuccesstissue regeneration
项目摘要
DESCRIPTION (provided by applicant): Controlled fibroblast directional motility, self-organization and synthetic capacity are fundamental to connective tissue development, growth, remodeling and repair. However, the signals which drive these aspects of fibroblast behavior are poorly understood. It is becoming increasingly clear that fibroblasts in mesenchymal tissue possess intrinsic patterning and synthetic potential and, under appropriate conditions, could be harnessed to repair or regenerate highly-organized connective tissues such as the corneal stroma. In mammalian stromal development, neural crest-derived mesenchymal cells invade the prospective corneal space, organize themselves, then produce, extend and subsequently maintain stromal extracellular matrix (ECM) architecture under increasing intraocular pressure. Our understanding of this process is quite limited, particularly with respect to 1) drivers of inital corneal mesenchymal/fibroblast cell patterning, 2) mechanisms of local and global control of matrix deposition and 3) mechanisms which guide tissue extension (growth) under mechanical force. Our limited appreciation of factors which control matrix deposition, retention and resorption extends to tissue regeneration including stromal wound healing, scar resolution and implant remodeling. It has been a dogmatic belief that the highly-organized collagenous arrays found in the stroma are refractory to in situ regeneration (particularly in humans). Our long-term basic science goals are to determine how highly-organized connective tissue is constructed, extended during growth, maintained, repaired and remodeled. Our long-term translational goals are to utilize this knowledge to formulate new approaches to corneal wound repair and regeneration. To accomplish the long term goals, it is necessary to first determine what factors control fibroblast organizational behavior during matrix production and to determine by what mechanism they control the orientation and retention of deposited collagen. The specific objective of this proposal is to investigate the effect of mechanical signaling on the organization synthesis and retention of collagenous matrix. To accomplish this objective, we will utilize our expertise in live, dynamic cell imaging, bioreactor design, mechanobiology and mechanochemistry. Our central hypothesis for this proposal is that mechanical signaling provides a robust and persistent guidance cue to corneal fibroblasts which is capable of 1) controlling the global organization of the cells, 2) guiding the deposition and preferential retention of collagen and 3) controlling tissue growth. To examine these hypotheses we will utilize our recently developed mechanobioreactor which permits live, long-term imaging of fibroblasts during the production of tissue. Loads of varying magnitude will be placed on a culture system and the output of the cells will be recorded on a minute-to-minute basis. The results of the proposed investigations should not only fully test the central hypothesis, but provide quantitative details about the levels of force necessary to stimulate and control the behavior of PCFs during matrix production.
描述(由申请人提供):受控的成纤维细胞定向运动、自组织和合成能力是结缔组织发育、生长、重塑和修复的基础。然而,驱动成纤维细胞行为的这些方面的信号知之甚少。越来越清楚的是,间充质组织中的成纤维细胞具有内在的图案化和合成潜力,并且在适当的条件下,可以被利用来修复或再生高度组织化的结缔组织,如角膜基质。在哺乳动物基质发育中,神经嵴来源的间充质细胞侵入预期的角膜空间,组织自己,然后产生,扩展并随后在增加的眼内压下维持基质细胞外基质(ECM)结构。我们对这一过程的理解非常有限,特别是关于1)初始角膜间充质/成纤维细胞图案化的驱动因素,2)基质沉积的局部和全局控制机制和3)在机械力下引导组织延伸(生长)的机制。我们对控制基质沉积、保留和再吸收的因素的有限理解延伸到组织再生,包括基质伤口愈合、瘢痕消退和植入物重塑。人们一直认为,基质中发现的高度组织化的胶原阵列难以原位再生(特别是在人类中)。我们的长期基础科学目标是确定高度组织化的结缔组织是如何构建的,在生长过程中延伸,维持,修复和重塑。我们的长期转化目标是利用这些知识来制定角膜伤口修复和再生的新方法。为了实现长期目标,有必要首先确定在基质生产过程中哪些因素控制成纤维细胞组织行为,并确定它们通过何种机制控制沉积胶原的取向和保留。本提案的具体目标是研究机械信号对胶原基质的组织合成和保留的影响。为了实现这一目标,我们将利用我们在活细胞、动态细胞成像、生物反应器设计、机械生物学和机械化学方面的专业知识。我们对这一提议的中心假设是,机械信号传导为角膜成纤维细胞提供了一个强大而持久的指导线索,它能够1)控制细胞的整体组织,2)引导胶原蛋白的沉积和优先保留,3)控制组织生长。为了检验这些假设,我们将利用我们最近开发的机械生物反应器,它允许在组织生产过程中对成纤维细胞进行实时、长期的成像。将不同量级的负载置于培养系统上,并以分钟为单位记录细胞输出。拟议的调查结果不仅应充分测试中心假设,但提供定量的细节,必要的力的水平,以刺激和控制的行为的PCF在矩阵生产。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey W Ruberti其他文献
Jeffrey W Ruberti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey W Ruberti', 18)}}的其他基金
Mechanical Causation of Corneal Stromal Matrix Synthesis and Fibrosis
角膜基质基质合成和纤维化的机械原因
- 批准号:
10659976 - 财政年份:2023
- 资助金额:
$ 36.93万 - 项目类别:
Cell-Free Assembly of Organized Collagen Arrays
有组织的胶原阵列的无细胞组装
- 批准号:
7241873 - 财政年份:2007
- 资助金额:
$ 36.93万 - 项目类别:
Cell-Free Assembly of Organized Collagen Arrays
有组织的胶原阵列的无细胞组装
- 批准号:
7359669 - 财政年份:2007
- 资助金额:
$ 36.93万 - 项目类别:
Investigation of Collagen as a Smart Engineering Material
胶原蛋白作为智能工程材料的研究
- 批准号:
7230087 - 财政年份:2006
- 资助金额:
$ 36.93万 - 项目类别:
Investigation of Collagen as a Smart Engineering Material
胶原蛋白作为智能工程材料的研究
- 批准号:
7077109 - 财政年份:2006
- 资助金额:
$ 36.93万 - 项目类别:
Mechanobiology of Matrix Production by Corneal Fibroblasts
角膜成纤维细胞基质产生的力学生物学
- 批准号:
8387865 - 财政年份:2005
- 资助金额:
$ 36.93万 - 项目类别:
相似海外基金
The clarification of the pulp generation mechanism to improve the odontoblast differentiation by the transporter of ascorbic acid.
阐明牙髓生成机制,通过抗坏血酸转运蛋白改善成牙本质细胞分化。
- 批准号:
19K10147 - 财政年份:2022
- 资助金额:
$ 36.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Increasing ascorbic acid and iron levels in tomatoes to enhance human nutrition and plant abiotic stress tolerance
增加番茄中的抗坏血酸和铁含量,以增强人类营养和植物非生物胁迫耐受性
- 批准号:
10025435 - 财政年份:2022
- 资助金额:
$ 36.93万 - 项目类别:
Responsive Strategy and Planning
Elucidation of promotion mechanism of chemical direct reprogramming by ascorbic acid
抗坏血酸化学直接重编程促进机制的阐明
- 批准号:
20K12627 - 财政年份:2020
- 资助金额:
$ 36.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the relationship between ascorbic acid intake and iron-deficiency induced bone loss
抗坏血酸摄入量与缺铁性骨丢失关系的研究
- 批准号:
19K11701 - 财政年份:2019
- 资助金额:
$ 36.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mechanism of ascorbic acid and amino acids high-accumulation in introgression lines of tomato
番茄基因渗入系抗坏血酸和氨基酸高积累机制
- 批准号:
19K06012 - 财政年份:2019
- 资助金额:
$ 36.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Production of plant with high ascorbic acid contents by metabolic engineering
利用代谢工程生产高抗坏血酸植物
- 批准号:
18K05620 - 财政年份:2018
- 资助金额:
$ 36.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effect of ascorbic acid on endothelial cell function under severe pathological conditions using fluorescence imaging analysis
利用荧光成像分析抗坏血酸对严重病理条件下内皮细胞功能的影响
- 批准号:
18K16496 - 财政年份:2018
- 资助金额:
$ 36.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists