Exercise, Age-Related Memory Decline, and Hippocampal Function.
运动、与年龄相关的记忆衰退和海马功能。
基本信息
- 批准号:8325547
- 负责人:
- 金额:$ 59.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAerobicAerobic ExerciseAffectAgeAge-associated memory impairmentAgingAging-Related ProcessAnimalsAreaAttenuatedBehavior TherapyBlood VolumeBrainBrain regionCensusesCerebrovascular CirculationCerebrumCognitiveCognitive agingControl GroupsDataDevelopmentDiffuseElderlyEnrollmentEpidemicEvaluationExerciseFamilyFunctional Magnetic Resonance ImagingFunctional disorderGoalsHealthcare SystemsHippocampal FormationHippocampus (Brain)HousingHumanImpaired cognitionIndividualInterventionLearningLengthLifeLiteratureLongevityMediatingMediationMediator of activation proteinMemoryMolecularMorbidity - disease rateMusNeuronsNeuropsychological TestsPerformancePopulationProcessPublic PolicyRandomizedRegimenResearchResolutionSamplingSlideSocietiesSpin LabelsStagingTestingTimeTrainingUnited StatesVariantWaiting Listsage relatedaging populationcognitive functiondentate gyrusfrontal lobehealthy aginghippocampal subregionsimprovedimproved functioningin vivointervention effectmortalitynormal agingprogramspublic health relevanceyoung adult
项目摘要
DESCRIPTION (provided by applicant): In the US, increased length of life and reduced morbidity and mortality have resulted in a growing number of older adults, the demographic "time bomb" often referred to in discussions of public policy. According to the Census Bureau, the population aged 65 and over will double in size within the next 25 years. Moreover, these older adults will live healthier lives than their predecessors. While this increased length of a healthy life is an undeniable societal benefit, it brings with it a major societal problem: an epidemic of aging-related cognitive decline. The need to develop interventions to address this growing problem is urgent. Aging-related cognitive dysfunction is not diffuse; rather it targets selected brain areas, in particular the frontal lobes and the hippocampal formation. The separate but interconnected subregions of the hippocampus are differentially vulnerable to pathogenic mechanisms, including the normal aging process. A range of in vivo and post-mortem studies have converged on the dentate gyrus (DG) as the hippocampal subregion differentially targeted by the aging process. As with pathogenic processes, any intervention that improves brain function does so with regional selectivity. One such intervention is physical exercise, which has been shown to improve both frontal lobe and hippocampal function. Using a high-resolution variant of functional magnetic resonance imaging (fMRI), we have demonstrated that aerobic training selectively benefitted DG function both humans and mice. In addition, improvement in DG function was associated with improved performance on a word list learning task but not in tasks conventionally thought to be frontal lobe dependent. The human part of the study had significant shortcomings, however: it was small (N = 11), lacked a control group, enrolled only young subjects (age 20-45 years), and employed only a limited neuropsychological testing battery. The overall goal of this proposal is to use the high-resolution variant of fMRI to test the hypothesis that aerobic training will induce improvements in DG function in a sample of younger (age 20-35) and older (50-65) adults, assigned randomly to an active training condition or wait list control group. We will use more comprehensive neuropsychological testing to examine the relationship between changes in DG function and selected cognitive capacities. Taken together with the observation that normal aging differentially targets the DG, this research program will establish that physical exercise is an effective approach for ameliorating the insidious cognitive slide that occurs in all of us as we age. Thus, the potential significance of this application is substantial.
PUBLIC HEALTH RELEVANCE: According to the US Census Bureau, the United States population aged 65 and over is expected to double in size within the next 25 years, and this "demographic time bomb" will bring with it an epidemic of aging-related cognitive decline, imposing burdens on individuals and their families and on the healthcare system and society as a whole. The need to understand the pathophysiology of cognitive decline and then develop interventions to address this growing problem is urgent and in this application, we propose to test the impact of aerobic exercise training on cognitive function in a sample of young and older adults. In addition, because recent evidence suggests that 1) the dentate gyrus (DG) of the hippocampal formation is differentially targeted by cognitive aging and 2) that exercise improves DG function, we also use fMRI to test whether exercise-induced improvement in cognitive function is mediated by increased cerebral blood volume to the DG.
DESCRIPTION (provided by applicant): In the US, increased length of life and reduced morbidity and mortality have resulted in a growing number of older adults, the demographic "time bomb" often referred to in discussions of public policy. According to the Census Bureau, the population aged 65 and over will double in size within the next 25 years. Moreover, these older adults will live healthier lives than their predecessors. While this increased length of a healthy life is an undeniable societal benefit, it brings with it a major societal problem: an epidemic of aging-related cognitive decline. The need to develop interventions to address this growing problem is urgent. Aging-related cognitive dysfunction is not diffuse; rather it targets selected brain areas, in particular the frontal lobes and the hippocampal formation. The separate but interconnected subregions of the hippocampus are differentially vulnerable to pathogenic mechanisms, including the normal aging process. A range of in vivo and post-mortem studies have converged on the dentate gyrus (DG) as the hippocampal subregion differentially targeted by the aging process. As with pathogenic processes, any intervention that improves brain function does so with regional selectivity. One such intervention is physical exercise, which has been shown to improve both frontal lobe and hippocampal function. Using a high-resolution variant of functional magnetic resonance imaging (fMRI), we have demonstrated that aerobic training selectively benefitted DG function both humans and mice. In addition, improvement in DG function was associated with improved performance on a word list learning task but not in tasks conventionally thought to be frontal lobe dependent. The human part of the study had significant shortcomings, however: it was small (N = 11), lacked a control group, enrolled only young subjects (age 20-45 years), and employed only a limited neuropsychological testing battery. The overall goal of this proposal is to use the high-resolution variant of fMRI to test the hypothesis that aerobic training will induce improvements in DG function in a sample of younger (age 20-35) and older (50-65) adults, assigned randomly to an active training condition or wait list control group. We will use more comprehensive neuropsychological testing to examine the relationship between changes in DG function and selected cognitive capacities. Taken together with the observation that normal aging differentially targets the DG, this research program will establish that physical exercise is an effective approach for ameliorating the insidious cognitive slide that occurs in all of us as we age. Thus, the potential significance of this application is substantial.
PUBLIC HEALTH RELEVANCE: According to the US Census Bureau, the United States population aged 65 and over is expected to double in size within the next 25 years, and this "demographic time bomb" will bring with it an epidemic of aging-related cognitive decline, imposing burdens on individuals and their families and on the healthcare system and society as a whole. The need to understand the pathophysiology of cognitive decline and then develop interventions to address this growing problem is urgent and in this application, we propose to test the impact of aerobic exercise training on cognitive function in a sample of young and older adults. In addition, because recent evidence suggests that 1) the dentate gyrus (DG) of the hippocampal formation is differentially targeted by cognitive aging and 2) that exercise improves DG function, we also use fMRI to test whether exercise-induced improvement in cognitive function is mediated by increased cerebral blood volume to the DG.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard P SLOAN其他文献
Richard P SLOAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard P SLOAN', 18)}}的其他基金
Dietary Modulation of Neuroinflammation in Age-Related Memory Disorders
饮食调节与年龄相关的记忆障碍中的神经炎症
- 批准号:
10457914 - 财政年份:2018
- 资助金额:
$ 59.97万 - 项目类别:
Dietary Modulation of Neuroinflammation in Age-Related Memory Disorders
饮食调节与年龄相关的记忆障碍中的神经炎症
- 批准号:
9975668 - 财政年份:2018
- 资助金额:
$ 59.97万 - 项目类别:
Dietary Modulation of Neuroinflammation in Age-Related Memory Disorders
饮食调节与年龄相关的记忆障碍中的神经炎症
- 批准号:
9933182 - 财政年份:2018
- 资助金额:
$ 59.97万 - 项目类别:
Dietary Modulation of Neuroinflammation in Age-Related Memory Disorders
饮食调节与年龄相关的记忆障碍中的神经炎症
- 批准号:
9766169 - 财政年份:2018
- 资助金额:
$ 59.97万 - 项目类别:
Dietary Modulation of Neuroinflammation in Age-Related Memory Disorders
饮食调节与年龄相关的记忆障碍中的神经炎症
- 批准号:
10187474 - 财政年份:2018
- 资助金额:
$ 59.97万 - 项目类别:
Psychosocial Factors and Aging: Resting/Reflexive Cardiovascular Control
心理社会因素和衰老:静息/反射性心血管控制
- 批准号:
8532602 - 财政年份:2013
- 资助金额:
$ 59.97万 - 项目类别:
Exercise, aging, and cognition: Effect and mechanisms
运动、衰老和认知:效果和机制
- 批准号:
8526315 - 财政年份:2010
- 资助金额:
$ 59.97万 - 项目类别:
Exercise, aging, and cognition: Effect and mechanisms
运动、衰老和认知:效果和机制
- 批准号:
8723714 - 财政年份:2010
- 资助金额:
$ 59.97万 - 项目类别:
Exercise, aging, and cognition: Effect and mechanisms
运动、衰老和认知:效果和机制
- 批准号:
7986691 - 财政年份:2010
- 资助金额:
$ 59.97万 - 项目类别:
Exercise, Age-Related Memory Decline, and Hippocampal Function.
运动、与年龄相关的记忆衰退和海马功能。
- 批准号:
7986086 - 财政年份:2010
- 资助金额:
$ 59.97万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 59.97万 - 项目类别:
Research Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 59.97万 - 项目类别:
Standard Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 59.97万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 59.97万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 59.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 59.97万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 59.97万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 59.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 59.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 59.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




