Design and Validation of the Utah Multisite Electrode Array (UMEA)
犹他多点电极阵列 (UMEA) 的设计和验证
基本信息
- 批准号:8720477
- 负责人:
- 金额:$ 40.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-01 至 2017-01-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsActive SitesAdhesionsAnimalsArchitectureAreaBiological Neural NetworksBrainBrain MappingCereportCharacteristicsChronicClinicalClinical TrialsCommunitiesComplexComputersDataDepositionDetectionDevelopmentDevicesElectrodesEngineeringExtravasationFDA approvedFelis catusFutureGoalsHumanIn VitroIndividualIonsLocationMapsMeasurementMeasuresMetalsModelingNeuronsNeurosciencesNoisePatternPerformancePhysiologic pulsePhysiologicalPlatinumPrevalenceProceduresProcessPropertyPublishingRecordsReproducibilityResearchResearch PersonnelResolutionScanning Electron MicroscopyShapesSignal TransductionSiteSolutionsSourceSpectrum AnalysisSpeedStructureSurfaceTechniquesTechnologyTestingTimeTissuesUtahValidationWritingbasedensitydesignelectric impedanceflexibilityimprovedin vitro testingin vivoinnovationmillimeternanometerneuroregulationnovelpublic health relevancerelating to nervous systemsuccesstool
项目摘要
DESCRIPTION (provided by applicant): The technological advancements in neural engineering have provided an increasingly more powerful toolset of designs, materials, components and integrated devices for establishing high-fidelity chronic neural interfaces. A primary requirement of these neural interfaces for majority of the neuroscience studies is the ability to simultaneously record and/or stimulate from a large neuronal aggregates for specific periods of time. The future progress in neuroscience to a large extent relies on the ability of these neural interfaces to allow simultaneous observation and experimental access of complex neural networks and properties of cooperating neurons. Two critical solutions for achieving this goal are placing a large number of electrode sites in a small amount of tissue at the sub-millimeter range without significant tissue damage and efficient isolation of action potentials emanating from individual neurons. These solutions have remained largely unexploited mainly because of technological challenges, inherent limitations in design tolerances, and non-standard manufacturing techniques used in existing neural devices. Today, most of the success achieved in understating the physiological function of the brain is based on the sequential analysis of single-site recordings. And one neural interface, which has been successful in achieving this is the Utah electrode array (UEA), the only FDA approved commercialized device that has been extensively used in human clinical trials. Although the reasons are debatable as to its prevalence, the UEA records a rich feature set of neuronal information by distributing its electrodes at regular spacing over a large region across the cortical surface. However, this also implies that the data on any given electrode may be the only source of such information and, hence, it is not a robust source of information. As a result there has been a long-desire in the neuroscience community for having the ability to have multiple active sites distributed along each UEA electrode shanks, which could give it the robustness in feature extraction but not at the expense of losing its ability to record across the a wide region of cortical surface. We have developed a novel focused ion beam (FIB) technology that allows fabricating multiple sites on the shafts of the UEA. The FIB technology allows one to literally "write" with platinum on the shaft of the UEA with precise control and <1 um resolution. As the underlying structure of the proposed Utah Multisite electrode array (UMEA) is a UEA, our proposed innovation does not lose the value of the standard UEA but does gain the advantage of robustness in detection of neuronal sources. Furthermore, the flexibility in patterning multiple sites on each shank readily allows the creation of tetrode and laminar configurations of multisites on the shaft of the UEA so that the device can be tailored to the task. Also the electrode sites can be realized from a variety of materials, can have a range of surface areas, and can be placed anywhere along the shanks at any spacing. The objective of this research is to design, investigate and validate different configurations of high density (56 electrodes/mm2) UMEA (specific aim-I). We will perform in-vitro testing (specific aim-II) and in-vivo validation and comparison of recording performance of different configuration of the UMEA (specific aim-III). The presented innovation and objectives in this proposal will open a whole spectrum of new possibilities for the neuroscience researcher. It is envisioned that the UMEA will be a better tool for understanding neuronal activity by providing recordings sites in a three dimensional region of cortex. The ease and flexibility of incorporating any multisite design of on the UEA shanks makes the presented approach simple and yet efficient. As a result, the proposed study will be a shortest path towards product validation (device and animal) and the clinical implementation of a new electrode technology (UMEA).
描述(申请人提供):神经工程的技术进步为建立高保真的慢性神经接口提供了越来越强大的设计、材料、部件和集成设备集。对于大多数神经科学研究来说,这些神经接口的一个主要要求是能够同时记录和/或刺激特定时间段的大神经元聚集体。未来神经科学的进步在很大程度上依赖于这些神经接口的能力,即能够同时观察和实验访问复杂的神经网络和协作神经元的特性。实现这一目标的两个关键解决方案是在亚毫米范围内的少量组织中放置大量电极位置,而不会对组织造成重大损害,以及有效地分离单个神经元发出的动作电位。这些解决方案在很大程度上仍未得到开发,主要是因为技术挑战、设计公差的固有限制以及现有神经设备中使用的非标准制造技术。今天,在低估大脑的生理功能方面取得的大部分成功都是基于对单一地点记录的顺序分析。而成功实现这一目标的一个神经接口是犹他州电极阵列(UEA),它是FDA批准的唯一已广泛用于人体临床试验的商业化设备。尽管其流行的原因尚有争议,但UEA通过将电极以规则的间距分布在大脑皮层表面的大片区域来记录丰富的神经元信息。然而,这也意味着,任何给定电极上的数据可能是此类信息的唯一来源,因此,它不是一个可靠的信息来源。因此,神经科学界一直渴望具有沿每个UEA电极柄分布的多个活性部位的能力,这可以使其在特征提取方面具有健壮性,但不会以失去其在广泛的皮质表面区域进行记录的能力为代价。我们开发了一种新的聚焦离子束(FIB)技术,允许在UEA的轴上制造多个位置。FIB技术使人们能够在精确控制和1um分辨率的情况下,在UEA的轴上使用铂金进行字面上的“写入”。由于所提出的犹他州多点电极阵列(UMEA)的底层结构是UEA,所以我们所提出的创新并没有失去标准UEA的价值,但在检测神经元来源时确实获得了稳健性的优势。此外,在每个刀柄上形成多个部位图案的灵活性使得可以在UEA轴上创建多个部位的四极和层状结构,从而使设备可以根据任务进行量身定做。此外,电极位置可以由各种材料实现,可以具有一定范围的表面积,并且可以以任意间距沿小腿放置在任何位置。这项研究的目的是设计、调查和验证不同配置的高密度(56个电极/平方毫米)UMEA(特定目标-I)。我们将进行体外测试(特定AIM-II)和体内验证和比较不同配置的UMEA(特定AIM-III)的记录性能。这项提案中提出的创新和目标将为神经科学研究人员开辟一系列新的可能性。可以预见,通过提供皮层三维区域的记录位置,UMEA将成为了解神经元活动的更好工具。在UEA支架上融入任何多站点设计的简单性和灵活性使所提出的方法简单而高效。因此,拟议的研究将是通往产品验证(设备和动物)和新电极技术的临床实施(UMEA)的最短路径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajmohan Bhandari其他文献
Rajmohan Bhandari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajmohan Bhandari', 18)}}的其他基金
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 40.64万 - 项目类别:
An implantable chronic 128 channel macro and micro ECoG system with integrated recording, stimulation, and impedance measuring capabilities
植入式慢性 128 通道宏观和微观 ECoG 系统,具有集成记录、刺激和阻抗测量功能
- 批准号:
9085458 - 财政年份:2015
- 资助金额:
$ 40.64万 - 项目类别:
Plasma-assisted atomic layer deposition of alumina and Parylene-C bi-layer encaps
氧化铝和聚对二甲苯-C 双层封装的等离子体辅助原子层沉积
- 批准号:
8715283 - 财政年份:2014
- 资助金额:
$ 40.64万 - 项目类别:
Plasma-assisted atomic layer deposition of alumina and Parylene-C bi-layer encaps
氧化铝和聚对二甲苯-C 双层封装的等离子体辅助原子层沉积
- 批准号:
8877517 - 财政年份:2014
- 资助金额:
$ 40.64万 - 项目类别:
Design and Validation of the Utah Multisite Electrode Array (UMEA)
犹他多点电极阵列 (UMEA) 的设计和验证
- 批准号:
8997542 - 财政年份:2014
- 资助金额:
$ 40.64万 - 项目类别:
HIGHLY CUSTOMIZABLE BLACKROCK MICRO MOLDED ARRAYS (BRMMA)
高度可定制的贝莱德微模塑阵列 (BRMMA)
- 批准号:
8453715 - 财政年份:2013
- 资助金额:
$ 40.64万 - 项目类别:
Revolutionizing Utah Array using Nanotechnology to Enhance Efficacy and Longevity
利用纳米技术革新犹他阵列以提高功效和寿命
- 批准号:
8523542 - 财政年份:2013
- 资助金额:
$ 40.64万 - 项目类别:
HIGHLY CUSTOMIZABLE BLACKROCK MICRO MOLDED ARRAYS (BRMMA)
高度可定制的贝莱德微模塑阵列 (BRMMA)
- 批准号:
8617312 - 财政年份:2013
- 资助金额:
$ 40.64万 - 项目类别:
Revolutionizing Utah Array using Nanotechnology to Enhance Efficacy and Longevity
利用纳米技术革新犹他阵列以提高功效和寿命
- 批准号:
8729033 - 财政年份:2013
- 资助金额:
$ 40.64万 - 项目类别:
Development and Commercialization of Next Generation of Neural Microelectrode Arr
下一代神经微电极Arr的开发和商业化
- 批准号:
8250324 - 财政年份:2011
- 资助金额:
$ 40.64万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 40.64万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 40.64万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 40.64万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 40.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 40.64万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 40.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 40.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 40.64万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 40.64万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 40.64万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




