Design and Validation of the Utah Multisite Electrode Array (UMEA)
犹他多点电极阵列 (UMEA) 的设计和验证
基本信息
- 批准号:8997542
- 负责人:
- 金额:$ 41.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-01 至 2018-01-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsActive SitesAdhesionsAnimalsArchitectureAreaBiological Neural NetworksBrainBrain MappingCereportCharacteristicsChronicClinicalClinical TrialsCommunitiesComplexComputersDataDepositionDetectionDevelopmentDevicesElectrodesEngineeringExtravasationFDA approvedFelis catusFutureGoalsHumanIn VitroIndividualIonsLocationMapsMeasurementMeasuresMetalsModelingNeuronsNeurosciencesNoisePatternPerformancePhysiologic pulsePhysiologicalPlatinumPrevalenceProceduresProcessPropertyPublishingRecordsReproducibilityResearchResearch PersonnelResolutionScanning Electron MicroscopyShapesSignal TransductionSiteSourceSpectrum AnalysisSpeedStructureSurfaceTechniquesTechnologyTestingTimeTissuesUtahValidationWritingbasedensitydesignelectric impedanceflexibilityimprovedin vitro testingin vivoinnovationmillimeternanometerneuroregulationnovelpublic health relevancerelating to nervous systemsuccesstool
项目摘要
DESCRIPTION (provided by applicant): The technological advancements in neural engineering have provided an increasingly more powerful toolset of designs, materials, components and integrated devices for establishing high-fidelity chronic neural interfaces. A primary requirement of these neural interfaces for majority of the neuroscience studies is the ability to simultaneously record and/or stimulate from a large neuronal aggregates for specific periods of time. The future progress in neuroscience to a large extent relies on the ability of these neural interfaces to allow simultaneous observation and experimental access of complex neural networks and properties of cooperating neurons. Two critical solutions for achieving this goal are placing a large number of electrode sites in a small amount of tissue at the sub-millimeter range without significant tissue damage and efficient isolation of action potentials emanating from individual neurons. These solutions have remained largely unexploited mainly because of technological challenges, inherent limitations in design tolerances, and non-standard manufacturing techniques used in existing neural devices. Today, most of the success achieved in understating the physiological function of the brain is based on the sequential analysis of single-site recordings. And one neural interface, which has been successful in achieving this is the Utah electrode array (UEA), the only FDA approved commercialized device that has been extensively used in human clinical trials. Although the reasons are debatable as to its prevalence, the UEA records a rich feature set of neuronal information by distributing its electrodes at regular spacing over a large region across the cortical surface. However, this also implies that the data on any given electrode may be the only source of such information and, hence, it is not a robust source of information. As a result there has been a long-desire in the neuroscience community for having the ability to have multiple active sites distributed along each UEA electrode shanks, which could give it the robustness in feature extraction but not at the expense of losing its ability to record across the a wide region of cortical surface. We have developed a novel focused ion beam (FIB) technology that allows fabricating multiple sites on the shafts of the UEA. The FIB technology allows one to literally "write" with platinum on the shaft of the UEA with precise control and <1 um resolution. As the underlying structure of the proposed Utah Multisite electrode array (UMEA) is a UEA, our proposed innovation does not lose the value of the standard UEA but does gain the advantage of robustness in detection of neuronal sources. Furthermore, the flexibility in patterning multiple sites on each shank readily allows the creation of tetrode and laminar configurations of multisites on the shaft of the UEA so that the device can be tailored to the task. Also the electrode sites can be realized from a variety of materials, can have a range of surface areas, and can be placed anywhere along the shanks at any spacing. The objective of this research is to design, investigate and validate different configurations of high density (56 electrodes/mm2) UMEA (specific aim-I). We will perform in-vitro testing (specific aim-II) and in-vivo validation and comparison of recording performance of different configuration of the UMEA (specific aim-III). The presented innovation and objectives in this proposal will open a whole spectrum of new possibilities for the neuroscience researcher. It is envisioned that the UMEA will be a better tool for understanding neuronal activity by providing recordings sites in a three dimensional region of cortex. The ease and flexibility of incorporating any multisite design of on the UEA shanks makes the presented approach simple and yet efficient. As a result, the proposed study will be a shortest path towards product validation (device and animal) and the clinical implementation of a new electrode technology (UMEA).
描述(由申请人提供):神经工程的技术进步为建立高保真慢性神经界面提供了越来越强大的设计、材料、组件和集成设备工具集。 对于大多数神经科学研究来说,这些神经接口的主要要求是能够在特定时间段内同时记录和/或刺激大型神经元聚集体。 神经科学的未来进展在很大程度上依赖于这些神经接口的能力,以允许同时观察和实验访问复杂的神经网络和合作神经元的属性。 实现这一目标的两个关键解决方案是在亚毫米范围内的少量组织中放置大量电极部位,而不会造成明显的组织损伤,并有效隔离从单个神经元发出的动作电位。 这些解决方案在很大程度上尚未开发,主要是因为技术挑战,设计公差的固有限制以及现有神经设备中使用的非标准制造技术。 今天,在了解大脑生理功能方面取得的大多数成功都是基于对单点记录的顺序分析。 有一种神经接口,已经成功地实现了这一点,那就是犹他州电极阵列(UEA),这是唯一一种FDA批准的商业化设备,已广泛用于人体临床试验。 虽然其原因是有争议的,其流行,UEA记录了丰富的功能集的神经元信息分布在一个大区域在整个皮层表面的电极在规则的间距。 然而,这也意味着任何给定电极上的数据可能是这种信息的唯一来源,因此,它不是可靠的信息来源。 因此,神经科学界长期以来一直希望能够使多个活性位点沿着沿着每个UEA电极柄分布,这可以使其在特征提取中具有鲁棒性,但不会以失去其在皮层表面的宽区域上记录的能力为代价。 我们已经开发出一种新的聚焦离子束(FIB)技术,允许制造多个网站上的轴的UEA。 FIB技术允许人们在UEA轴上用铂进行精确的“书写”,控制精确,分辨率<1 um。 由于所提出的犹他州多位点电极阵列(UMEA)的底层结构是UEA,所以我们提出的创新没有失去标准UEA的价值,但确实获得了在神经元源检测中的鲁棒性的优点。 此外,在每个柄部上图案化多个位点的灵活性容易允许在UEA的轴上产生多位点的四极和层状构造,使得该装置可以针对任务进行定制。 而且,电极部位可以由各种材料实现,可以具有一定范围的表面积,并且可以以任何间距沿着柄放置在任何地方。 本研究的目的是设计、研究和验证不同配置的高密度(56个电极/mm 2)UMEA(特定目的-I)。 我们将进行体外测试(特定目标-II)和体内确认,并比较UMEA不同配置的记录性能(特定目标-III)。 本提案中提出的创新和目标将为神经科学研究人员开辟一系列新的可能性。 据设想,UMEA将是一个更好的工具,了解神经元的活动,提供记录网站在一个三维区域的皮层。 在UEA刀柄上结合任何多部位设计的方便性和灵活性使得所提出的方法简单而有效。 因此,拟定研究将是产品确认(器械和动物)和新电极技术(UMEA)临床实施的最短路径。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reusable High Aspect Ratio 3-D Nickel Shadow Mask.
- DOI:10.1109/jmems.2017.2654126
- 发表时间:2017-04
- 期刊:
- 影响因子:0
- 作者:Shandhi MMH;Leber M;Hogan A;Warren DJ;Bhandari R;Negi S
- 通讯作者:Negi S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajmohan Bhandari其他文献
Rajmohan Bhandari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajmohan Bhandari', 18)}}的其他基金
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 41.24万 - 项目类别:
An implantable chronic 128 channel macro and micro ECoG system with integrated recording, stimulation, and impedance measuring capabilities
植入式慢性 128 通道宏观和微观 ECoG 系统,具有集成记录、刺激和阻抗测量功能
- 批准号:
9085458 - 财政年份:2015
- 资助金额:
$ 41.24万 - 项目类别:
Plasma-assisted atomic layer deposition of alumina and Parylene-C bi-layer encaps
氧化铝和聚对二甲苯-C 双层封装的等离子体辅助原子层沉积
- 批准号:
8715283 - 财政年份:2014
- 资助金额:
$ 41.24万 - 项目类别:
Plasma-assisted atomic layer deposition of alumina and Parylene-C bi-layer encaps
氧化铝和聚对二甲苯-C 双层封装的等离子体辅助原子层沉积
- 批准号:
8877517 - 财政年份:2014
- 资助金额:
$ 41.24万 - 项目类别:
Design and Validation of the Utah Multisite Electrode Array (UMEA)
犹他多点电极阵列 (UMEA) 的设计和验证
- 批准号:
8720477 - 财政年份:2014
- 资助金额:
$ 41.24万 - 项目类别:
HIGHLY CUSTOMIZABLE BLACKROCK MICRO MOLDED ARRAYS (BRMMA)
高度可定制的贝莱德微模塑阵列 (BRMMA)
- 批准号:
8453715 - 财政年份:2013
- 资助金额:
$ 41.24万 - 项目类别:
Revolutionizing Utah Array using Nanotechnology to Enhance Efficacy and Longevity
利用纳米技术革新犹他阵列以提高功效和寿命
- 批准号:
8523542 - 财政年份:2013
- 资助金额:
$ 41.24万 - 项目类别:
HIGHLY CUSTOMIZABLE BLACKROCK MICRO MOLDED ARRAYS (BRMMA)
高度可定制的贝莱德微模塑阵列 (BRMMA)
- 批准号:
8617312 - 财政年份:2013
- 资助金额:
$ 41.24万 - 项目类别:
Revolutionizing Utah Array using Nanotechnology to Enhance Efficacy and Longevity
利用纳米技术革新犹他阵列以提高功效和寿命
- 批准号:
8729033 - 财政年份:2013
- 资助金额:
$ 41.24万 - 项目类别:
Development and Commercialization of Next Generation of Neural Microelectrode Arr
下一代神经微电极Arr的开发和商业化
- 批准号:
8250324 - 财政年份:2011
- 资助金额:
$ 41.24万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 41.24万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 41.24万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 41.24万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 41.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 41.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 41.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 41.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 41.24万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 41.24万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 41.24万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




